...
首页> 外文期刊>biological cybernetics >Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex
【24h】

Anisotropic connectivity and cooperative phenomena as a basis for orientation sensitivity in the visual cortex

机译:

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A computer simulation model of the neural circuitry underlying orientation sensitivity in cortical neurons is examined. The model consists of a network of 3000 neurons divided into two functionally distinct cell types: excitatory (E-cells) and inhibitory (I-cells). We demonstrate that both orientation sensitivity and shape selectivity can be accounted for by making the following assumptions: 1) thalamic afferents to a sheet of cortical neurons are retionotopically organized; 2) thalamic afferents come from a single neuron, or at most a few neurons, in the lateral geniculate nucleus; 3) cortical activity is cooperative, i.e. largely dependent on intracortical connections, some of which have anisotropies along directions parallel to the pial surface. Anisotropies are specified only by the distribution of cells which are postsynaptic to a particular neuron, without specifying the axonal or dendritic contributions. In this paper, orientation sensitivity arises through cooperative interactions among neurons having anisotropic excitatory, and isotropic inhibitory connections.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号