...
首页> 外文期刊>Physics in medicine and biology. >Transit-guided radiation therapy: proof of concept of an on-line technique for correcting position errors using transit portal images
【24h】

Transit-guided radiation therapy: proof of concept of an on-line technique for correcting position errors using transit portal images

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. Transit in vivo dosimetry methods monitor that the dose distribution is delivered as planned. However, they have a limited ability to identify and to quantify the cause of a given disagreement, especially those caused by position errors. This paper describes a proof of concept of a simple in vivo technique to infer a position error from a transit portal image (TPI). Approach. For a given treatment field, the impact of a position error is modeled as a perturbation of the corresponding reference (unperturbed) TPI. The perturbation model determines the patient translation, described by a shift vector, by comparing a given in vivo TPI to the corresponding reference TPI. Patient rotations can also be determined by applying this formalism to independent regions of interest over the patient. Eight treatment plans have been delivered to an anthropomorphic phantom under a large set of couch shifts (<15 mm) and rotations (<10 degrees) to experimentally validate this technique, which we have named Transit-Guided Radiation Therapy (TGRT). Main results. The root mean squared error (RMSE) between the determined and the true shift magnitudes was 1.0/2.4/4.9 mm for true shifts ranging between 0-5/5-10/10-15 mm, respectively. The angular accuracy of the determined shift directions was 12 degrees +/- 14 degrees. The RMSE between the determined and the true rotations was 0.5 degrees. The TGRT technique decoupled translations and rotations satisfactorily. In 96 of the cases, the TGRT technique decreased the existing position error. The detection threshold of the TGRT technique was around 1 mm and it was nearly independent of the tumor site, delivery technique, beam energy or patient thickness. Significance. TGRT is a promising technique that not only provides reliable determinations of the position errors without increasing the required equipment, acquisition time or patient dose, but it also adds on-line correction capabilities to existing methods currently using TPIs.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号