...
首页> 外文期刊>Medical Physics >Cone beam CT dosimetry: a unified and self-consistent approach including all scan modalities--with or without phantom motion.
【24h】

Cone beam CT dosimetry: a unified and self-consistent approach including all scan modalities--with or without phantom motion.

机译:锥束CT剂量测定法:统一且自洽的方法,包括所有扫描模式-带有或不带有幻像运动。

获取原文
获取原文并翻译 | 示例

摘要

PURPOSE: This article describes a common methodology and measurement technique, encompassing both conventional (helical and axial) CT scanning using phantom translation and cone beam (or narrow fan beam) CT scans about a stationary phantom. Cone beam CT systems having beam widths along the z-axis wide enough to cover a significant anatomical length (50-160 mm) in a single axial rotation (e.g., in cardiac CT) are rapidly proliferating in the clinic, referred to herein as stationary cone beam CT (SCBCT). The integral format of the CTDI paradigm is not appropriate for a stationary phantom, and is not useful for predicting the dose in SCBCT, nor for perfusion studies or CT fluoroscopy. Likewise, the pencil chamber has limited utility in this domain (even one of extended length). METHODS: By demonstrating, both experimentally and theoretically, the match between the dose distribution f(z) for a wide cone beam and that due to an axial scan series D(z), it is shown that the dose on the central ray of the cone beam f(0) is both spatially colocated and numerically equal to the dose predicted by CTDI for the axial series; and thus f(0) is the logical (and unique) choice for a SCBCT dose-descriptor consistent with the CTDI-based dose of conventional CT. This dose f(0) can be readily measured using a conventional (short) ionization chamber. Additionally, Monte Carlo simulations of Boone [J. M. Boone, "Dose spread functions in computed tomography: A Monte Carlo study," Med. Phys. 36, 4547-4554 (2009)], expressed as a scatter LSF (or DSF), allow the application of a convolution-based model [R. L. Dixon, M. T. Munley, and E. Bayram, "An improved analytical model for CT dose simulation with a new look at the theory of CT dose," Med. Phys. 32, 3712-3728 (2005)] of the axial dose profile f(z) for any primary beam width a (any n x T), fan beam and cone beam alike, from a single LSF kernel; its simple form allows the results to be expressed as simple analytical equations. The experimental data of Mori et al. [S. Mori, M. Endo, K. Nishizawa, T. Tsunoo, T. Aoyama, H. Fujiwara, and K. Murase, "Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry," Med. Phys. 32, 1061-1069 (2005)] from a 256 channel cone beam scanner for a variety of beam widths (28-138 mm) are used to corroborate the theory. RESULTS: Useful commonalities between SCBCT and conventional CT dose are revealed, including a common equilibrium dose parameter A(eq), which is independent of z-collimator aperture a (or n x T), and a common analytical (exponential growth) function H(lambda) describing the relative approach to scatter equilibrium at z = 0 for both modalities (with lambda = a or lambda = scan length L). This function exhibits good agreement with the above-mentioned cone beam data of Mori et al. for H(a) as well as with data H(L) obtained from conventional CT scanning [R. L. Dixon and A. C. Ballard, "Experimental validation of a versatile system of CT dosimetry using a conventional ion chamber: Beyond CTDI100," Med. Phys. 34(8), 3399-3413 (2007)] for the same directly irradiated, phantom length L = a. CONCLUSIONS: This methodology and associated mathematical theory provide a physically self-consistent description of dose between stationary phantom CT and conventional CT, and has predictive capabilities which can be used to effect a substantial reduction in data collection; provide a bridge between modalities; and predict the relevant peak doses f(0) for perfusion studies.
机译:目的:本文介绍了一种常见的方法和测量技术,包括使用幻像平移的常规(螺旋和轴向)CT扫描以及围绕固定体模的锥束(或窄扇形光束)CT扫描。具有沿z轴的射束宽度的宽度足以在单个轴向旋转中(例如在心脏CT中)覆盖相当大的解剖长度(50-160mm)的锥形射束CT系统在临床中迅速扩散,在本文中称为固定式锥形束CT(SCBCT)。 CTDI范例的整体格式不适用于固定体模,并且对于预测SCBCT中的剂量,灌注研究或CT透视检查均无用。同样,铅笔腔在此领域(甚至是延伸长度中的一个)的用途有限。方法:通过实验和理论上证明宽锥束的剂量分布f(z)与轴向扫描序列D(z)的分布之间的匹配,表明剂量在中心锥上的剂量锥束f(0)在空间上同位置且在数值上等于CTDI针对轴向序列预测的剂量;因此,f(0)是SCBCT剂量描述符与常规CT基于CTDI剂量一致的逻辑(唯一)选择。使用常规(短)电离室可以很容易地测量该剂量f(0)。此外,布恩的蒙特卡罗模拟[J. M. Boone,“计算机断层扫描中的剂量扩散函数:蒙特卡洛研究”,医学。物理36,4547-4554(2009)]表示为分散LSF(或DSF),允许应用基于卷积的模型[R. L. Dixon,M。T. Munley和E. Bayram,“一种改进的CT剂量模拟分析模型,对CT剂量的理论有了新的认识,” Med。物理[32,3712-3728(2005)]给出了来自单个LSF内核的任何主光束宽度a(任何n x T),扇形光束和圆锥形光束的轴向剂量曲线f(z);它的简单形式允许将结果表示为简单的解析方程式。森等人的实验数据。 [S.森,M.远藤,K.西泽,T. Tsunoo,T.青山,H.藤原和K. Murase,“锥束CT的纵向剂量分布增大,需要改进剂量学”,医学。物理32,1061-1069(2005)]使用了用于各种光束宽度(28-138 mm)的256通道锥束扫描仪进行了验证。结果:揭示了SCBCT和常规CT剂量之间的有用共性,包括一个共同的平衡剂量参数A(eq),该参数独立于z准直仪孔径a(或nx T),以及一个共同的分析(指数增长)函数H( Lambda)描述了两种模态(z = 0或lambda =扫描长度L)在z = 0时散射平衡的相对方法。该功能与Mori等人的上述锥形束数据很好地吻合。 H(a)以及从常规CT扫描获得的数据H(L)[R. L. Dixon和A. C. Ballard,“使用常规离子室的多功能CT剂量测定系统的实验验证:超越CTDI100,” Med。物理[34(8),3399-3413(2007)]],对于相同的直接辐射,幻影长度L = a。结论:该方法学和相关的数学理论为固定体模CT和常规CT之间的剂量提供了物理上自洽的描述,并且具有可用于大大减少数据收集的预测能力;在方式之间架起一座桥梁;并预测用于灌注研究的相关峰值剂量f(0)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号