...
首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >One-step synthesis ofcis-5,6-dideuterio-cis-cyclo-octene and its thermal stability towards concerted, intramolecular transfer of hydrogen
【24h】

One-step synthesis ofcis-5,6-dideuterio-cis-cyclo-octene and its thermal stability towards concerted, intramolecular transfer of hydrogen

机译:一步法合成顺式-5,6-二氘-顺式-环辛烯及其热稳定性,实现氢的协同分子内转移

获取原文

摘要

342 J'.C.S. Perkin IOne-step Synthesis of cis-5,6-Dideuterio-cis-cyclo-octene and ItsThermal Stability towards Concerted, Intramolecular Transfer ofHydrogenBy A. J. Bellamy, Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJcis-5,6-Dideuterio-cis-cyclo-octene has been synthesised in one step from cyclo-octa-I ,5-diene by reductionwith dideuteriodi-imide. On prolonged pyrolysis a t 250". intramolecular transfer of the vicinal 5- and 6- protonsto the double bond does not occur; thus no 1,2-dideuterio-cis-cyclo-octene is formed.SEVERAL examples of the concerted, intermoleculartransfer of two vicinal hydrogen atoms to a doublebond are known,l but few intramolecular exampleshave been reported.2 In all known examples of thistype of reaction a decrease in free energy a t the origin ofmigration occurs (see ref.1). However, given a suitableconfiguration and/or conformation, a thermally neutral,intramolecular hydrogen transfer might conceivablyoccur.Transannular transfer of a single hydrogen atom iscommon in the cyclo-octane series.3 Molecular modelssuggest that cis-cyclo-octene might be able to adopt asuitable conformation for the concerted transfer of twovicinal 5- and 6-protons to the double bond. In theextreme-boat conformation of cis-cyclo-octene, theinternuclear distances between the endo-5- and 6-protonsand C(l) and C(2) respectively, are both ca. 2.2 A.However, in this conformation there are severe non-bonded interactions between the 4- and 7-protons andthe 3- and 8-protons as well as many eclipsed inter-actions.A twist-boat conformation would relievemost of these non-bonded interactions to some degree;in such a conformation, the same hydrogen-carboninternuclear distances are ca. 2-2 and ca. 2-5 A. Inboth conformations the 5- and 6-protons appear closeenough to the double bond to make transfer possible,but the attainment of these conformations may besterically difficult.Since an intramolecular transfer of hydrogen incis-cyclo-octene would produce no observable chemicalchange, cis-5,6-dideuterio-cis-cyclo-octene was studied.S. Hunig, H. R. Muller, and W. Thier, Angew. Chem. Internat.Edn., 1965, 4, 271; W. von E. Doering and J. W. Rosenthal,J . Amer. Chem. SOC., 1967, 89, 4534; I.Fleming and E. Wild;smith, ' Orbital Symmetry Correlations in Organic Reactions,Chemical Society Symposium, Cambridge, 1969.Transfer of the cis-vicinal deuterium atoms in thiscompound would again produce no observable chemicalchange, but transfer of the cis-vicinal 5- and 6-protonswould give 1,2-dideuterio-cis-cyclo-octene. Such atransfer would be detectable by n.m.r. spectroscopy.The material studied was in fact a mixture of cis-5,6-dideuterio-cis-cyclo-octene (72.7y0), 5-deuterio-cis-cyclo-octene (23.6y0), and cis-cyclo-octene (3.7).Neglecting secondary isotope effects, complete equili-bration of cis-5,6-dideuterio-cis-cyclo-octene with 1,2-dideuterio-cis-cyclo-octene by a concerted transfer ofhydrogen should favour the 5,6-isomer by a factor oftwo. Thus, for the material used, the ratio olefinic : al-lylic : other protons (1.95 : 3.95 : 6.39 in the startingmaterial) should change to 1-44 : 4-00 : 6-87 in theequilibrated material.However, heating the cis-5,6-dideuterio-compound at 250" during 7 days producedno significant change in the n.m.r. spectrum. Con-certed transfer of hydrogen does not therefore occur inthis system at this temperature. At higher tempera-tures polymerisation becomes significant.Preparation of cis-5,6-Dideute~io-cis-cyclo-octene.-5,6-Dideuterio-cis-cyclo-octene has been prepared by Copeet aL4 in a three-stage synthesis from cis,-cyclo-octa-1 J-diene monoepoxide. The cis-cyclo-octene obtainedK. MacKenzie, J . Chem. SOC., 1965, 4646.3 A.C. Cope, M. M. Martin, and M. A. McKervey, Quart.4 A. C. Cope, G. A. Berchtold, P. E. Peterson, and S. H.Rev., 1966, 20, 119.Sharman, J . Amer. Chem. SOC., 1960, 82, 63661972 343contained 74 of the 2H2-compound (deuteriumatoms expected to be in a cis-configuration because ofthe method of synthesis), 13 of the C2HJ- and 13of the 2H3-compound the third deuterium atom wasat C(5). A more convenient preparation of cis-5,6-dideuterio-cis-cyclo-octene involves reduction of cis,cis-cyclo-octa-l,5-diene with dideuteriodi-imide. Since di-imide is a cis-reducing agent,5 the cis-cyclo-octeneformed must have the two 5- and 6-deuterium atomsin a cis-relationship. cis-Cyclo-octene is reduced bydi-imide more rapidly than cis,cis-cyclo-octa-l,5-diene ;thus use of a large excess of the diene is necessary forefficient production of cis-cyclo-octene.From the ratio of products, and the isotopic abund-ance in the isolated cyclo-octene and cyclo-octane, itwas calculated that there had been an uptake of 88-1mmol of deuterium atoms and 15.9 mmol of hydrogenatoms.Of the hydrogen, only 2.5 mmol could come fromthe acetic 2Hacid used t o generate the di-imide frompotassium azodicarboxylate. The most likely sourcefor most of the hydrogen is the potassium azodicarb-oxylate, which contained ca. 0.3 hydrogen even afterprolonged drying. To determine what proportion ofthis hydrogen was exchangeable, a weighed amount ofpotassium azodicarboxylate was dissolved in aqueousdeuteriated methanol of known isotopic composition.Integration of the hydroxy-proton signal in the n.m.r.spectrum and comparison with the 13C side-band of thesignal for the methanolic methyl group gave the amountof exchangeable hydrogen liberated by the potassiumazodicarboxylate. We calculated that 21.8 mmol ofexchangeable hydrogen was present in the amount ofthe salt used in the reduction, more than enough toaccount for the reduction results.A reduction product of higher deuterium contentcould probably be obtained by precipitating the saltfrom deuteriated solvents, ensuring that any exchange-able hydrogen in the salt was replaced by deuterium,but this was not necessary for the present work.EXPERIMENTALN.m.r.spectra were determined using a Varian HA 100spectrometer, and mass spectra using an A.E.I.MS 902double-focusing spectrometer. G.1.c. analyses were per-formed with a 50 m, 0.25 mm i.d. capillary column coatedwith Apiezon L, operating at 40".Potassium Azodicarboxylate.6-Azoformamide (70 g) wasadded with stirring to aqueous potassium hydroxide(175 ml; 1 : 1 w/w) at 0". The solid partially dissolved,ammonia was evolved, and the product was precipitated.The latter was filtered off under nitrogen when the evolutionof ammonia had ceased, and dried (water pump). It wasthen dissolved in the minimum volume of water (ca. 400 ml)a t O", and immediately filtered into ethanol (ca. 1.6 1) a t0". The precipitated yellow potassium azodicarboxylatewas filtered off, washed twice with methanol a t Oo, drieda t the pump, and finally dried in vacuo (H2S04); yield* All silver nitrate solutions were saturated with ether.t A control experiment showed that 170/, of the cyclo-octeneThe extraction was lost during the silver nitrate treatment.was followcd by g.1.c.100 g (Found: C, 12.3, 12-2; H, 0.3, 0-25; N, 13.85, 13.9.Calc.for C,N,K,O,: C, 12.35; H, 0.0; N, 14-4y0). Afterfurther drying in vacuo at 100" (P,O,) a 0.5 g sample hadlost 5 mg in weight, and gave the following analyticalfigures: C, 9-7, 9-55, 9.85; H, 0.3, 0-4, 0.25; N, 13.4, 13-45,13.05. These figures suggest that some decompositionof the salt had occurred (lit.,s C, 12.45; H, 0.5; N,14-15y0).Reduction of cis,cis-Cyclo-octa-1,5-diene.-The diene waspurified before use by the formation of its silver nitratecomplex.7 Regeneration by steam-distillation gave mater-ial which was 99.98 pure by g.l.c., and contained lessthan 0-001 cis-cyclo-octene.The purified diene (50-8 g,0-47 mol) was added to a suspension of potassium azo-dicarboxylate (19.3 g, 0.10 mol) in dry ether (200 ml).The apparatus was flushed with nitrogen, then acetic2Hacid (5.0 g, 0.082 mol; 98.5 CaH1) in dry ether(20 ml) was added at the rate of 2-3 drops rnin-l withvigorous stirring. After stirring for 24 h, a further quantityof acetic ZHIacid in ether (5.0 g in 20 ml) was added a tthe same rate. The reduction was followed by g.1.c.(see the Table). After 180 h, the solid was filtered offProduct ratios in the reduction of czs,cis-cyclo-octa-1,B-dienet/h Cyclo-octadiene Cyclo-octene Cyclo-octane24 96.0 3.6 0.484 93.7 5.4 0.9132 92.1 6.4 1.5180 91.0 7.0 2.0and washed with dry ether (100 ml), and the organicsolution was dried (Na,CO,; 6 h).To remove the excessof cyclo-octa-1,5-diene, the solution was first extractedwith aqueous silver nitrate * (100 ml) and water (350 ml),the latter to dissolve the large amount of complex formedin this extraction, and then with saturated aqueous silvernitrate (3 x 100 ml). The resulting ethereal solution,free from cyclo-octa-l,5-diene, t was dried (MgSO,), filtered,and evaporated to give cyclo-octene (75) and cyclo-octane (25).The mixture was separated by preparative g.1.c. O-1ml samples, 10 f t x 0.25 in column, Gas Chrom P (40-60mesh) with a 30 coating of 30 silver nitrate in glycerol,75O, helium carrier gas, 30 lb in-2.The separated productswere shown to have the following isotopic compositionby low-voltage mass spectrometry : cyclo-octene, 2H,72-7y0, 2H,, 23.6y0, 2Ho 3.7 ; cyclo-octane, ,H453-7, 2H3 34.4y0, 2H2 lO-O, and 2Hl 1.9.The n.m.r. spectrum (CC1, solution) of the cyclo-octeneshowed the following absorptions: T 4.45 (1-95H, m,olefinic), 7-9 (3*95H, m, allylic), and 8.55 (6.39H, m, other)(the integrations were based on an isotopic compositionof 73 t2H, and 24 2H, in the third region). Integr-ation of the spectrum of undeuteriated cyclo-octene gavevalues of 1-96H, 3-97H, and 8.03H, respectively. Anotherreduction, where the mixing of reagents was carried outin a dry-box, gave products with the following isotopiccomposition : cyclo-octene, 79.4y0, ,H1 19.4,zHo 1.2 ; cyclo-octane, ,Ha 66.1y0, C2H3 29.0yo,E.J. Corey, D. J. Pasto, and W. L. Mock, J . Amer. C h e wSOC., 1961, 83, 2957.J . Thiele, Annalen, 1892, 271, 127. ' A. C . Cope, C. L. Stevens, and F. A. Hochstein, J . Amer.Chem. Soc.. 1950, 72, 2510; A. C. Cope and F. A. Hochstein,ibid., p. 2515J.C.S. Perkin IL2H2 4.9. The isotopic abundance in cyclo-octane isvery close to that calculated for the reduction of bothdouble bonds by using the isotopic abundance found forthe reduction of the first double bond. This indicatesthat the isotopic abundance in the di-imide must beuniform throughout the reaction.Determination of the Amount of Exchangeable Hydrogenin Potassium AzodicarboxyZate.-Deuterium oxide (4.005 g ;99.7 2H2) and methan2Hl01 (1-304 g ; 98.5 2H1)were mixed in a dry-box, and the hydrogen content wasdetermined by integrating the hydroxy-proton signal andcomparing it with the 13C side-band of the methyl groupsignal in the n.m.r.spectrum. Potassium azodicarboxylate(1.01 1 g) was added slowly to deuterium oxide-methan-2Hlol (2-734 g) in a dry-box, and the resulting solutionwas again analysed by n.m.r. After correction for thehydrogen present in the solvent, this indicated that 1.14mmol of exchangeable hydrogen atoms were present in1.011 g of the salt (i.e., 21.8 mmol of exchangeable hydrogenatoms in the 19.3 g of potassium azodicarboxylate usedin the large-scale reduction of cyclo-octa-l,5-diene).Pyrolysis of cis-5,6-Dideuterio-cis-cyclo-octene.-The cyclo-octene (73 mg), in a sealed tube, was heated at (a) 180"and (b) 250" during 170 h. The product, pure cyclo-octene(by g.l.c.), was dissolved in CCl, and analysed by n.m.r.The average of several integrated spectra gave the followingratios of protons (based on an average of 12.31 protonsper molecule) :T/"C Q Olefinic Allylic Otherb 1.95 3-95 6.39180 1.96 4.02 6.32250 1.90 4-04 6-35Q Polymerisation became significant at 300 "C. b Startingmaterial.1/1365 Received, August 3rd 1971
机译:342 J'.C.S. Perkin IOne-step Synthesis of cis-5,6-Dideuterio-cis-cyclo-octene and ItsThermal Stability towards Concerted, Intramolecular Transfer ofHydrogen作者:A. J. Bellamy,爱丁堡大学化学系,爱丁堡西主路 EH9 3JJcis-5,6-二氘-顺式-环辛烯已一步从环-八-I,5-二烯通过还原二氘二酰亚胺合成。在长时间热解时,t 250“。不发生邻近5-和6-质子向双键的分子内转移;因此不会形成1,2-二氘-顺式-环-辛烯。两个相邻的氢原子协同分子间转移到双键的几个例子是已知的,l 但很少有分子内的例子被报道.2 在所有已知的这种反应的例子中,自由能的降低发生了迁移的起源(见参考文献 1)。然而,给定合适的构型和/或构象,可以想象发生热中性的分子内氢转移。3分子模型表明,顺式-环-辛烯可能能够采用合适的构象,将两个邻位的5-和6-质子协同转移到双键上。在顺式环辛烯的极端船构象中,内-5-和6-质子之间的核间距离分别为C(l)和C(2),均约为2.2 A。然而,在这种构象中,4 和 7 质子与 3 和 8 质子之间存在严重的非键相互作用以及许多黯然失色的相互作用。扭船构象将在一定程度上缓解这些非键合相互作用的大部分;在这样的构象中,相同的氢-碳核间距离约为2-2和约2-5 A.在这两种构象中,5-质子和6-质子看起来都足够接近双键,使转移成为可能,但这些构象的实现可能非常困难。由于氢切口-环-辛烯的分子内转移不会产生可观察到的化学变化,因此研究了顺式-5,6-二氘基-顺式-环辛烯。国际化学版, 1965, 4, 271;W. von E. Doering 和 J. W. Rosenthal,J .美国化学SOC., 1967, 89, 4534;I.弗莱明和E.怀尔德;史密斯,“有机反应中的轨道对称相关性”,化学学会研讨会,剑桥,1969.该化合物中顺式-邻近氘原子的转移将再次产生可观察到的化学变化,但顺式-邻近 5- 和 6-质子的转移将产生 1,2-二氘-顺式-环辛烯。这种转移可以通过n.m.r.光谱法检测到。所研究的材料实际上是顺式-5,6-二氘-顺式-环辛烯(72.7y0)、5-氘-顺式-环辛烯(23.6y0)和顺式-环辛烯(3.7%)的混合物。忽略次级同位素效应,顺式-5,6-二氘-顺式-环-辛烯与1,2-二氘-顺式-环-辛烯通过氢的协同转移完全平衡应有利于5,6-异构体的两倍。因此,对于所用材料,烯烃:丙烯酸:其他质子的比例(起始材料中的1.95:3.95:6.39)应变为平衡材料中的1-44:4-00:6-87。然而,在 7 天内以 250“ 加热顺式-5,6-二氘代化合物在 nmr 光谱中没有显着变化。因此,在这个温度下,该系统不会发生氢气的转移。在较高温度下,聚合变得显著。-5,6-二氘-顺式-环-辛烯的制备方法为基础,Copeet aL4 以顺式、&-环-八-1 J-二烯单环氧化物为三阶段合成制备了顺式-5,6-二氘-顺式-环辛烯.得到的顺式环辛烯K.麦肯齐,J .Chem. SOC., 1965, 4646.3 A.C. Cope, M. M. Martin, and M. A. McKervey, Quart.4 A. C. Cope, G. A. Berchtold, P. E. Peterson, and S. H.Rev., 1966, 20, 119.Sharman, J .Amer. Chem. SOC., 1960, 82, 63661972 343含有74%的[2H2]-化合物(由于合成方法,氘原子预计呈顺式构型),13%的C2HJ-和13%的[2H3]-化合物[第三个氘原子在C(5)]。顺式-5,6-二氘-顺式-环辛烯的更方便的制备涉及用二氘二酰亚胺还原顺式,顺式-环-八-l,5-二烯。由于二酰亚胺是一种顺式还原剂,5 顺式环辛烯形成的两个 5 氘原子和 6 氘原子必须具有顺式关系。顺式-环辛烯比顺式-环-八-l,5-二烯更快地还原二酰亚胺;因此,使用大量过量的二烯对于高效生产顺式环辛烯是必要的。根据产物的比例以及分离的环辛烯和环辛烷中的同位素丰度,计算出氘原子的摄取量为88-1mmol,氢原子的摄取量为15.9mmol。在氢气中,只有 2.5 mmol 可能来自乙酸 [2H]酸,用于从偶氮二羧酸钾生成二酰亚胺。大多数氢气最可能的来源是偶氮二威氧化钾,即使在长时间干燥后,它也含有约0.3%的氢气。为了确定这种氢的可交换比例,将称量的偶氮二羧酸钾溶解在已知同位素组成的氘代甲醇水溶液中。将羟基质子信号在n.m.r.谱中积分,并与甲醇甲基信号的13C边带进行比较,得出了钾唑二羧酸钾释放的可交换氢的量。我们计算出,还原中使用的盐量中存在 21.8 mmol 的可交换氢,足以解释还原结果。通过从氘化溶剂中沉淀盐,确保盐中任何可交换的氢被氘取代,可以得到氘含量较高的还原产物,但这对于目前的工作来说不是必需的。使用瓦里安 HA 100 光谱仪测定 EXPERIMENTALN.m.r.光谱,使用 A.E.I.MS 902 双聚焦光谱仪测定质谱图。G.1.c.分析是用涂有Apiezon L的50 m、0.25 mm内径的毛细管柱进行的,工作温度为40“。将偶氮二羧酸钾.6-偶氮甲酰胺(70g)搅拌加入到0“的氢氧化钾水溶液(175ml;1:1w/w)中。固体部分溶解,析出氨,析出产物。当氨的演变停止时,后者在氮气下过滤掉,然后干燥(水泵)。然后将其溶解在最小体积的水(约400毫升)a t O“中,并立即过滤到乙醇(约1.6 1)a t0”中。滤除析出的黄色偶氮二羧酸钾,用甲醇at Oo洗涤2次,泵干燥,最后真空干燥(H2S04);产量* 所有硝酸银溶液均用醚饱和.t 对照实验表明,硝酸银处理过程中,170/的环辛烯萃取损失,随后 g.1.c.100 g(发现:C,12.3,12-2;H, 0.3, 0-25;N, 13.85, 13.9.计算 C,N,K,O,: C, 12.35;H,0.0;N,14-4y0)。在100“ (P,O,) a 0.5 g样品重量减轻了5 mg,并给出以下分析数字:C、9-7、9-55、9.85;H, 0.3, 0-4, 0.25;N,13.4,13-45,13.05%。[这些数字表明盐发生了一些分解(lit.,s C, 12.45;H, 0.5;N,14-15y0)]。顺式,顺式-环-八-1,5-二烯的还原.-二烯在使用前通过形成硝酸银络合物进行纯化.7 通过蒸汽蒸馏再生得到的材料,其纯度为99.98%,并且含有小于0-001%的顺式环辛烯.将纯化的二烯(50-8g,0-47mol)加入到偶氮二羧酸钾(19.3g,0.10mol)的干乙醚(200ml)悬浮液中。用氮气冲洗仪器,然后以2-3滴rnin-l的速率在干乙醚(20ml)中加入乙酸[2H]酸(5.0g,0.082mol;98.5%CaH1]),并剧烈搅拌。搅拌24小时后,以相同的速率加入更多量的乙酸[ZHIacid乙醚溶液(20ml中5.0g)。随后是g.1.c。(见表)。180 h后,滤除固体还原的产物比,顺式环-辛-1,B-二烯/h 环辛二烯 环辛烷 环辛烷24 96.0 3.6 0.484 93.7 5.4 0.9132 92.1 6.4 1.5180 91.0 7.0 2.0,并用干乙醚(100 ml)洗涤,有机溶液干燥(Na,CO,; 6 h)。为了除去过量的环-辛-1,5-二烯,首先用硝酸银水溶液*(100毫升)和水(350毫升)萃取溶解,后者溶解在这种萃取中形成的大量络合物,然后用饱和硝酸银水溶液(3×100毫升)。将所得不含环辛烯,5-二烯的空灵溶液干燥(MgSO),过滤,蒸发得到环辛烯(75%)和环辛烷(25%)。用制备剂g.1.c分离混合物。[O-1ml样品,10 f t x 0.25柱,气体铬P(40-60目),30%涂有30%硝酸银在甘油,75O,氦气载气,30lb in-2中的涂层。低压质谱分析表明,分离产物的同位素组成如下:环辛烯,[2H,]72-7y0,[2H,],23.6y0,[2Ho]3.7%;环辛烷,[,H4]53-7%,[2H3]34.4y0,[2H2]lO-O%和[2Hl]1.9%。环辛烯的n.m.r.光谱(CC1,溶液)显示以下吸收:T 4.45(1-95H,m,烯烃),7-9(3*95H,m,烯丙基)和8.55(6.39H,m,其他)(积分基于第三区域73%t2H,]和24% [2H,]的同位素组成)。未氘化环辛烯光谱的积分分别给出了 1-96H、3-97H 和 8.03H 的值。另一种还原,即在干燥箱中进行试剂混合,得到具有以下同位素组成的产品:环辛烯,79.4y0,[,H1] 19.4%,[zHo] 1.2%;环辛烷, [,Ha] 66.1y0, C2H3] 29.0yo,E.J. Corey, D. J.Pasto 和 WL Mock, J .美国 C h e wSOC., 1961, 83, 2957.J .蒂勒,安纳伦,1892 年,271 年,127 年。' A. C .Cope, CL Stevens, 和 FA Hochstein, J .Amer.Chem. Soc..1950, 72, 2510;A. C. Cope 和 F. A. Hochstein,同上,第 2515 页J.C.S. Perkin IL2H2] 4.9%。环辛烷中的同位素丰度非常接近于使用还原第一个双键的同位素丰度计算出的还原两个双键的同位素丰度。这表明二酰亚胺中的同位素丰度在整个反应过程中必须均匀。可交换氢钾偶氮二羧酸氘-氧化氘(4.005g;将99.7%[2H2])和甲烷[2Hl]01(1-304 g;98.5% [2H1])混合在干燥箱中,通过积分羟基质子信号,并与n.m.r.谱中甲基信号的13C边带进行比较,测定氢含量。将偶氮二羧酸钾(1.01 1 g)缓慢加入到干燥箱中的氧化氘-甲烷-[2Hl]醇(2-734 g)中,并再次用n.m.r分析所得溶液。在对溶剂中存在的氢进行校正后,这表明在1.011 g盐中存在1.14mmol的可交换氢原子(即,在19.3 g偶氮二羧酸钾中存在21.8 mmol可交换氢原子,用于大规模还原环-八-l,5-二烯)。顺式-5,6-二氘-顺式-环辛烯的热解。-在密封管中,环辛烯(73mg)在170小时内以(a)180“和(b)250”加热。将产物纯环辛烯(g.l.c.)溶解在CCl中,并用n.m.r.分析几种积分光谱的平均值得出以下质子比率(基于每个分子平均12.31个质子):T/“C Q 烯烃烯丙基其他b 1.95 3-95 6.39180 1.96 4.02 6.32250 1.90 4-04 6-35Q 聚合在300”C.b起始材料时变得显著。[1/1365 收稿日期:1971年8月3日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号