首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Polypeptides. Part XXII. The synthesis of peptides of α-benzylphenyl-. Alanine by the dicyclohexylcarbodi-imide method
【24h】

Polypeptides. Part XXII. The synthesis of peptides of α-benzylphenyl-. Alanine by the dicyclohexylcarbodi-imide method

机译:多肽。第二十二部分.α-苄基苯基肽的合成。丙氨酸通过二环己基碳二酰亚胺法

获取原文
获取外文期刊封面目录资料

摘要

J.C.S. Perkin IPolypeptides. Part XXW The Synthesis of Peptides of a-Benzylphenyl-alanine by the Dicyclohexylcarbodi-imide MethodBy G. C. Barrett, P. M. Hardy, T. A. Harrow, and H. N. Rydon," Department of Chemistry, The University,Exeter EX4 4 0 0Dicyclohexylcarbodi-imide appears to be generally useful for the synthesis of protected dipeptides of a-benzyl-phenylalanine and for adding a-benzylphenylalanyl residues to the N-terminus of larger peptides. It is not, how-ever, generally suitable for adding further amino-acid residues to peptides with an N-terminal a-benzylphenylalanylresidue or for coupling reactions using peptides with a C-terminal a-benzylphenylalanyl residue. Suitable N-protecting groups for a-benzylphenylalanyl peptides are benzyloxycarbonyl and o-nitrophenylsulphenyl.Ethylesters are not suitable for C-protection, since they are difficult to hydrolyse owing to steric hindrance; 2-methyl-thioethyl esters are not subject to this and can be used successfully.Syntheses of two protected peptides corresponding to sequences 6-9 and 1 4 in bradykinin are described.THE work described in this paper had as its ultimateobjective the synthesis of analogues of bradykinin inwhich the phenylalanine residues in positions 5 and 8were replaced, singly or together, by a-benzylphenyl-alanyl -NH*C(CH,Ph),*CO- residues.* Although thisobjective was not realised, the presence of two benzylside-chains gave rise to synthetic difficulties which seemworthy of record and comparison with earlier work onpeptide synthesis with other aa-disubstituted amino-acids.The aa-disubstituted amino-acid most fully studied asa peptide component is a-methylalanine, peptidesyntheses with which were carried out by Kenner 2?3 andFaust 475 and their colleagues.Both groups found thatthe acylation of the amino-group in a-methylalanine andits derivatives is much more affected by steric hindrancethan is acylation by the activated carboxy-group in suchcompounds, but this is not our experience with a-* The abbreviation Bphe is used for this residue. Otherabbreviations are those recommended by I.U.P.A.C. (see Biochem.Part XXI, B. Ridge, H. N. Rydon, and C. R. Snell, J.C.S.M. T. Leplawy, D. S. Jones, G. W. Kenner, and R. C .J., 1972, 126, 773). Nb = P-NO,*C,H,*CH,.Perkin I , 1972, 2041.Sheppard, Tetrahedron, 1960, 11, 39.benzylphenylalanine. Of the commoner N-protectinggroups, both benzyloxycarbonyl 24, and p-tolyl-sulphonyl were used successfully.For carboxy-protection t-butyl esters were favoured,3 althoughmethy12p3 and benzyl* esters were also used. Of thecommoner coupling methods, the dicyclohexylcarbodi-imide,3*4 mixed pivalic anh~dride,~, $-nitrophenylester,' a ~ i d e , ~ . ~ and acid chloride 294 procedures have allbeen used, with varying degrees of success. The presentpaper deals with our experience in applying the dicyclo-hexylcarbodi-imide method to the synthesis of peptidesof a-benzylphenylalanine ; the application of the oxa-zolinone procedure 293 will be reported later.a-Benzylphenylalanine was prepared by the method ofFelkin,s with modifications of the details of the Schmidtreaction on ethyl dibenzylacetoacetate which greatlyimproved the yield of the intermediate N-acetyl-a-3 D.S. Jones, G. W. Kenner, J. Preston, and R. C. Sheppard,J . Chem. SOC., 1965, 6227.4 G. Faust and 13. Lange, J . prakt. Chem., 1960, (4)11, 153.5 G. Faust and M. Kleppel, J. prakt. Chenz., 1960, (4)11, 123.6 J. F. Diehl and E. A. Young, J . Medicin. Chem., 1964, 7 ,7 W. J. McGahreii and M. Goodman, Tetrahedron, 1967, 23,8 H. Felkin, Bull. Soc. chim. France, 1959, 20.820.20171972NPSN P S-OH Hbenzylphenylalanine ethyl ester. No difficulty wasexperienced in the preparation of the N-o-nitrophenyl-sulphenyl derivative by reaction of a-benzylphenyl-alanine with o-nitrophenylsulphenyl chloride in alkalinesolution; this derivative was used extensively incoupling reactions and also as an intermediate in thepreparation of the N-succinimidyl and Z-methylthio-ethyl esters of a-benzylphenylalanine.coupled smoothly with o-nitroarginine $-nitrobenzylester in chloroform solution in the presence of dicyclo-hexylcarbodi-imide to give a 70 yield of the protecteddipeptide (I).The similar coupling of N-o-nitrophenyl-sulp henyl- 01- benzylphenylalanine with L-seryl-L-prolyl-L-phenylalanyl-o-nitro-L-arginine P-nitrobenzyl ester (VI)in acetonitrile likewise gave a 70 yield of the protectedAr-o-Nitrophenylsulphenyl-a-benzylphenylalanineOH H ’ ONbONbONbNO2NO2,NO2I IN ps-Bp he*Arg.ON b Nps*Bphe*Ser*Pro*Phe*Arg. ON bNPSpentapeptide (11).These results indicate that thedicyclohexylcarbodi-imide method is likely to begenerally useful for the introduction of a-benzylphenyl-alanine residues at the N-terminus of the growing peptidechain in stepwise peptide syntheses. However, attemptsto couple the protected dipeptide, N-benzyloxycarbonyl-glycyl-a- benzylphenylalanine with L-seryl-L-prolyl-L-phenylalanine-o-nitro-L-arginine 9-nitrobenzyl ester (VI)using dicyclohexylcarbodi-imide failed, even in thepresence of added 1,2,4-triazole 10 and N-hydroxy-succinimide; l1 the method is thus not generally applic-able to the synthesis of a-benzylphenylalanine peptidesby fragment condensation procedures involving peptidescontaining C-terminal a-benzylphenylalanyl residues.The dicyclohexylcarbodi-imide method is likewise ofonly limited value in coupling reactions involving theaniino-group of a-benzylphenylalanyl residues.Thus,although the coupling by this method of the appropriatecarbosy-components with a-benzylphenylalanine estersgave the protected dipeptides (111; R = Et), (111; R =CH,-CH,-SMe), and (IV) in yields of 75, 90, and 75,respectively, the corresponding reaction between N-o-nitrophenylsulphenyl-L-proline and a-benzylphenyl-alanyl-w-nitro-L-arginine P-nitrobenzyl ester gave a verylow yield of the protected tripeptide (V), the N-acylureaZ*Gly.Bphe*OR Z*Pro*Bphe*OE tNps*Pro*Bphe*Arg( NO,) *ON bderived from the carboxy-component being the mainproduct, and attempts to couple N-benzyloxycarbonyl-and N-o-nitrophenylsulphenyl-glycine with a-benzyl-phenylalanyl-L-seryl-L-prolyl-w-nitro-L-arginyl $-nitro-L.Zervas, D. Borovas, and E. Gazis, J . Amer. Chem. Soc.,1963, 85, 3660.lo H. C. Beyermann and W. Maassen-van der Brink, ActuChiin. Acad. Sci. Hung., 1965, 44, 187.(111) (IV)(V>’ ONbNO2benzyl ester failed completely, even with added 1,2,4-triazole.To summarise, our results indicate that althoughdicyclohexylcarbodi-imide is not generally applicable asa coupling reagent for the synthesis of peptides of a-benzylphenylalanine, it can be used successfully for thesynthesis of dipeptides of a-benzylphenylalanine and oflarger peptides containing N-terminal residues of thisamino-acid.As expected, N-deprotection of a-benzylphenylalaninepeptides is less affected by steric hindrance than isNPSZSer Pro PheNPS OEtOH H OEtOE tOE tSCHEME 1I I z v OEt(m)SCHEME 2C-deprotection.The o-nitrophenylsulphenyl group wasremoved smoothly and in high yield from the peptides(I) and (11) by treatment with hydrogen chloride indioxan and ethyl acetate, respectively, and the benzyl-oxycarbonyl group from (IV) by catalytic hydro-genolysis. The ethyl ester (111; R = Et) resisted allattempts at hydrolysis with either acid l2 or alkali,l1 F. Weygand, D. Hoffmann, and E. Wiinsch, 2. Naturforsch.,1966, 21b, 426.la J. R. Vaughan and J. A. Eichler, J . Amar. Chem. SOC.,1964, 76, 24742636 J.C.S.Perkin Idiffering in this respect from the corresponding a-methyl-alanine derivative; 2*6 that this difficulty is indeed dueto steric hindrance is suggested by the fact that themethiodide of (111; R = CH,-CH,*SMe) readily givesthe free acid (111; R = H) in aqueous acetone at pH10 at room temperature,13 a reaction known to involveattack at a point distant from the a-carbon atom of theamino-acid residue.l*Details of syntheses of the protected tetrapeptides(VI) (Scheme 1) and (VII) (Scheme 2) required for theprojected synthesis of bradykinin analogues are given inthe Experimental section ; dicyclohexylcarbodi-imidewas used in all the coupling reactions.EXPERIMENTALThe purity of all peptides and intermediates was con-firmed by t.1.c.on Kieselgel G. Compounds with freeamino-groups were detected by means of o.1570 ninhydrinin n-butanol at 100"; peptides with N-terminal a-benzyl-phenylalanine residues gave very weak ninhydrin reactions l5and were best detected, as were N-protected peptides, bythe chlorine-starch-iodide method.lsOrganic solutions were dried over magnesium sulphateand concentrated or evaporated under reduced pressure ina rotary evaporator. Light petroleum was the fractionb.p. 40-60" unless otherwise indicated. Optical rotationswere measured with an ETL-NPL Polarimeter, model 143,(path length of 1 cm).a-Benzylphenylalanine and DerivativesThe following procedure gave a much better yield thanthat (ca. 25) obtained by the unmodified method ofFelkin.8 Concentrated sulphuric acid (36.4 ml, 0.68 mol)and sodium azide (34.3 g, 0.48 mol) were added alternately,in small portions, to a stirred solution of recrystallised ethyldibenzylacetoacetate (105 g, 0.34 mol) in redistilled tri-chloroacetic acid (700 g) a t 75-85'.The mixture waskept overnight a t room temperature and then poured intoice-water (1 1). The precipitated solid was dissolved inether and the solution washed with SM-sodium carbonateand water, dried, and concentrated. The product whichcrystallised from the solution (82 g in two crops) was re-crystallised from cyclohexane-ether ; N-acetyl a-benzyl-phenylalanine ethyl ester so obtained (78 g, 75) had m.p.121-123" (lit.,8 124-125") ; the average yield from severalpreparations was 72 ; the quality of the trichloroaceticacid is important.Hydrolysis by the method of Felkin 8gave a-benzylphenylalanine, m.p. 307-308" (Iit.,l7 307-308") (Found: N, 5.4. Calc. for C,,H,,NO,: N, 5.5) in85-95 yield; the hydrochloride, obtained by rapid addi-tion of 611-hydrochloric acid to a hot solution of the acidin 2~-sodium hydroxide had m.p. 314" (lit.,8 314") (Found:N, 4.6. Calc. for Cl,H,,CINO,: N, 4.8).A suspension of the hydrochloride (15 g, 51 mmol) inethanol (300 ml) was saturated with dry hydrogen chlorideand then refluxed for 3 h. Evaporation and two repetitionsof this procedure gave a solid residue, which was extractedwith hot chloroform, leaving undissolved starting material(5.2 g, 35). Addition of ether to the chloroform solution,followed by two recrystallisations of the precipitate froml3 M.J. S. A. Amaral, G. C . Barrett, H. N. Rydon, andJ. H. Willett, J . Chem. SOG. ( C ) , 1966, 807.l4 P. Mamalis and H. N. Rydon, J . Chem. SOL, 1955, 1049.chloroform-ether, gave a-benzylphenylalanine ethyl esterhydrochloride (9.6 g, 58), m.p. 176175" (Found: C, 67.8;H, 6.9; N, 4.4. C1,H,,CINO, requires C, 67-6; H, 6.9; N,4*4y0).o-Nitrophenylsulphenyl chloride ( 10.5 g, 55 mniol) and2~-sodium hydroxide were added alternately in small por-tions over 20 min to a stirred solution of a-benzylphenyl-alanine (12.75 g, 50 mmol) in 2~-sodium hydroxide (25 ml)and dioxan (62.5 ml), the pH being kept at about 8.5 duringthe reaction. The solution was diluted with water (500 ml)and filtered. The filtrate was acidified (Congo Red) with0.5hl-sulphuric acid and the gummy precipitate taken up inethyl acetate, washed with water, and dried.The resultingsolution was concentrated to 250 ml and treated with di-cyclohexylamine (10 ml, 50 mmol). After 18 h a t O", theyellow solid which had separated was filtered off and re-crystallised from ethanol, giving N-o-nitrophenyZsuZphenyZ-a-benzylphenylalanine dicyclohexylammoniuw salt (25.2 g,86), m.p. 198-199" (Found: C, 69.3; H, 7.4; N, 7.5.C,,H,,N,O,S requires C, 69-2; H, 7.4; X, 7.1).The foregoing salt (5.9 g, 10 mmol) was shaken with ethylacetate (30 ml) and 0.25~-sulphuric acid (50 ml). The ethylacetate solution was separated, washed with water, dried,and evaporated.The residue, dried in a vacuum desic-cator, was heated at 70" for 24 h with triethylamine (2.42ml, 17-5 mmol) and 2-chloroethyl methyl sulphide (1-65 g,15 mmol) ; triethylamine (1.38 ml, 10 mmol) and 2-chloro-ethyl methyl sulphide (1.1 g, 10 mmol) were then added andthe mixture was heated for a further 36 h. More amine(0.69 ml, 5 mmol) and sulphide (0.55 g, 5 mmol) were thenadded. After being heated for a further 36 h, the productwas dissolved in ethyl acetate; the solution was washedsuccessively with water, 0.5~-sulphuric acid, saturatedsodium hydrogen carbonate, and water, dried, and evap-orated. The residue (4.0 g), dissolved in a mixture ofanhydrous ethyl acetate (18 ml) and ether (18 ml), wastreated with a freshly prepared solution of anhydroushydrogen chloride (25 mmol) in ethyl acetate (7.5 ml),followed after 2 min by anhydrous ether (180 ml).Evap-oration to dryness, trituration of the residue with ether,and recrystallisation from ethyl acetate gave a-benzyl-flhenylalanine 2-methylthioethyl ester hydrochloride (2.4 g,65y0), m.p. 154-155" (Found: C, 62.1; H, 6-8; N, 3-9.C1,H,4C1N0,S requires C, 62-4; H, 6-6; N, 3.8).N-Hydroxysuccinimide (0.50 g, 4.35 mmol) was added toa solution of N-o-nitrophenylsulphenyl-a-benzylphenyl-alanine from the dicyclohexylammonium salt (2.56 g, 4.35mmol) in dioxan (20 ml). A solution of dicyclohexyl-carbodi-imide (0.90 g, 4.36 mmol) was added and themixture shaken at room temperature for 18 h. Dicyclo-hexylurea was then filtered off, the filtrate evaporated, andthe residue kept overnight at 0" in a little ethyl acetate.Filtration, evaporation of the filtrate, and recrystallisationof the residue from propan-2-01-light petroleum gave N-o-nitrophenylsulphenyl-a-benzylphenylalanine N-succinimidylester (1.90 g, 87), m.p.73-75" (Found: C, 61.1; H, 4.8;N, 7.9. C,,H,,N,O,S requires C, 61.8; H, 4.6; N, 8.3);this ester is dimorphic, the more stable form, m.p. 187O,being obtained by recrystallisation from acetone (Found :C, 61.6; H, 4.6; N, 8.1). This ester (1-67 g, 3.3 mmol)was kept for 30 s with hydrogen chloride (9.9 mmol) inl5 Cf. L. Tailleur and L. Berlinguet, Canad. J . Chenz., 1961,39, 1309; J. Org. Chem., 1962, 27, 653.l6 H. N. Rydon and P. W. G. Smith, Natuve, 1962, 169, 922.l7 L.H. Goodson, I. L. Honigberg, J. J. Lehman, and W. H.Burton, J. Org. Chenz., 1960, 25, 19201972 2637dioxan (23 ml). Ether (100 ml) was then added and theprecipitated solid collected and recrystallised from chloro-form-ether, giving u-benzylphenylalanine N-succinimidylester hydrochloride (1-11 g, 87y0), m.p. 151-152" (Found:C, 58.8; H, 5.3; N, 6.9. C20H,lClN,0,,H,0 requires C ,59.0; H, 5.7; N, 6.9).Peptides of u-Benzylphenylalaninew-Nitro-L-arginine P-nitrobenzyl ester hydrobromide l8(720 mg, 1-65 mmol) and N-o-nitrophenylsulphenyl-u-benzylphenylalanine dicyclohexylammonium salt (975 mg,1-65 mmol) were shaken together in chloroform (60 ml) for2-5 h. Dicyclohexylcarbodi-imide (375 mg, 1-82 mmol) inchloroforni (10 ml) was then added and the mixture shakenovernight. A drop of acetic acid was added and theprecipitated dicyclohexylurea was filtered off.The filtratewas washed successively with water, M-hydrochloric acid,water, saturated sodium hydrogen carbonate solution, andwater, dried, and evaporated. The residue was taken upin a little acetone, kept overnight at O", and filtered from alittle more urea. Evaporation of the filtrate and recrystal-lisation of the residue from ethanol gave N-o-nitrophenyl-sulphenyl-u-benzyl~henylalanyl-o-nitro-L-arginine p-nitro-benzyl ester (I) (870 mg, 71), m.p. 99-102", aIDl9 - 10-0"(c 1.0 in EtOAc) (Found: C, 56-3; H, 5.3; N, 14.9. C,,H,,-N,O,S requires C, 56.4; H, 4.9; N, 15.1y0). This ester(1-4 g, 1.9 niniol) was kept for 1.5 min with hydrogen chloride(5.6 mmol) in dioxan (23 ml).Addition of ether (50 ml),filtration after 30 min at 0", and trituration with ethylacetate and ether, followed by recrystallisation from ethanol-ether gave a-benzylphenylalanyl-o-nitro-L-arginine p-nibro-benzyl ester hydrochloride (760 mg, 64), m.p. 213-215",,1,lB - 16.0" (c 1-0 in HCO-NMe,) (Found: C , 55.7; H, 5.5;N, 15.5. C,gH,4C1N70, requires C, 56.5; H, 5.5; N, 15.6).AT-o-Nitrophenylsulphenyl-u-benzylphenylalanine di-cyclohexylaninionium salt (850 mg, 1-44 mmol) and L-seryl-L-prolyl-L-phenylalanyl-o-nitro-L-arginine p-nitrobenzylester hydrochloride (p. 2638) (1.04 g, 1-44 mmol) were shakenfor 2 h in acetonitrile (20 nil). Dicyclohexylcarbodi-imide(320 nig, 1.51 mmol) in acetonitrile (6 ml) was then addedand shaking was continued overnight.Work-up as usual,with sodium carbonate instead of sodium hydrogen carbon-ate for the alkaline wash, followed by precipitation fromethyl acetate with ether, gave N-o-nitrophenylsulphenyl-u-benry 19 henylalan~~1-~-seryl-~-~rolyl-L-fihenyl~lanyl-o-nitro-~-arginine p-nitrobenzyl ester (11) (1.1 g, 71), m.p. 1 2 A126", u ~ ~ ~ -13.0' (c 1.0 in CHCl,) (Found: C , 57-3; H,5 . 5 ; N, 14.4. C5,H5,Nl1O,,S requires C, 58-0; H, 5.3; N,14.5). This ester (600 mg, 0-56 mmol) was kept for 30 swith hydrogen chloride (1-67 mmol) in ethyl acetate (15 ml).Addition of ether (80 ml) and reprecipitation from ethanol-ethyl acetate with ether gave u-benzylphenylalanyl-~-seryl-~-prolyl-L-phenylalanyl-o-nitro-L-arginine p-nitrobenzyl esterJijtdrochloride (470 mg, 87y0), m.p.155-157", uID25 - 44-6"(c 0-6 in HCO-NMe,) (Found: C, 55.8; H, 5.7; K, 14.4.C4,H55C1N1,011,2H,0 requires C, 55-5; H, 6.0; N, 14.1y0).Dicyclohexylcarbodi-imide (3.45 g, 16.5 mmol) was addedin small quantities to a solution prepared from N-benzyl-oxycarbonylglycine l9 (3.135 g , 15 mmol), triethylamine(2.1 ml, 15 mmol), a-benzylphenylalanine ethyl ester hydro-chloride (4.80 g, 15 mmol), and chloroform (105 ml). Themixture was shaken at room temperature for 24 h and thenworked up in the usual manner. Recrystallisation fromethyl acetate-light petroleum gave N-benzyloxycavbonyl-glycyl-u-benzylphenylala?.tine ethyl ester (I11 ; R = Et) (5.36g, 75y0), m.p.81-82' (Found: C, 70.4; H, 6.5; N, 5.8.CZ8H,,N,O, requires C, 70.9; H, 6.4; N, 5.9). N -Benzyloxycarbonyl-L-prolyl-u-benzylphenylalanine ethylester (IV), prepared similarly in 70 yield as an uncrystal-lisable gum, was hydrogenated for 4 h a t room tempera-ture over 5 palladised charcoal (500 mg) in 95 aqueoust-butyl alcohol (25 mi). Filtration, evaporation, treatmentwith ethereal hydrogen chloride, and recrystallisation fromethanol-ether-light petroleum gave L-prolyl-u-benzylphenyl-alanine ethyl ester hydrochloride (0.4 g, 50), m.p. 176",uID19 +24.0" (c 1.0 in EtOH) (Found: C, 65.9; H, 6.9;N, 6.7. C2,H,,C1N20, requires C, 66.2; H, 7-0; N, 6.7).Dicyclohexylcarbodi-imide (650 mg, 3.15 mmol) in aceto-nitrile (5 ml) was added to a solution prepared from N-benzyloxycarbonylglycine (630 mg, 3.0 mmol) , ct-benzyl-phenylalanine 2-methylthioethyl ester hydrochloride ( 1 100mg, 3.0 mmol), and triethylamine (0.415 ml, 3.0 mmol) inacetonitrile (10 ml).After 18 h a t room temperature themixture was worked up as usual and the product, dissolvedin acetone, was shaken with Zeo-Karb (H+ form; 2 x 3.0 g)for 18 h. Evaporation of the filtrate gave the protectedpeptide (111; R = CH,*CH,*SMe) as a gum (1.41 g, goyo),which could not be induced to crystallise. This was re-fluxed with methyl iodide (2 mi, 32.5 mmol) for 3 h ; moremethyl iodide (2 ml) was then added, followed by a further1 ml after 12 h. After being refluxed for another 3 h, thesolution was evaporated and the residue triturated withether.Recrystallisation from acetone gave N-benzyloxy-carbonylglycyl-u-benzylphenylalanine 2-methylthioethyl estermethiodide (1.25 g, 70), m.p. 104-105" (Found: N, 3.9.C,,H,,IN,O,S requires N, 4.2). The unrecrystallisedmethiodide (5.8 g, 11.1 mmol), dissolved in 25 aqueousacetone (20 ml), was titrated with @5~-sodium hydroxidea t pH 10 for 45 min; consumption of alkali then ceased.Filtration, acidification with O.25~-sulphuric acid, and re-crystallisation of the gummy precipitate from aqueousethanol gave N-benzyloxycarbowylglycyl-a-benzyl~henylalan-ine (111; R = H) (2.73 g, 54 overall), m.p. 171-172'(Found: C, 70.1; H, 6-0; N, 6.2. C2,Hz,N,05 requires C,69.9; H, 5.9; N, 6.3).N-o-Nitrophenylsulphenyl-L-proline dicyclohexylammon-ium salt (1-0 g, 2-22 mmol) and a-benzylphenylalanyl-o-nitro-L-arginine fi-nitrobenzyl ester hydrochloride ( 1-4 g,2-22 mmol) were shaken together in chloroform (30 ml) for1 h.Dicyclohexylcarbodi-imide (0-51 g, 2.44 mmol) inchloroform (10 ml) was added and the mixture shaken for60 h. The precipitated dicyclohexylurea was filtered offand the filtrate evaporated to dryness. The residue wastaken up in ethyl acetate, washed as usual, and concentratedto 10 ml. After 12 h at 5", the crystalline precipitate wasfiltered off and recrystallised from ethanol, affordingNN'-dicyclohexyl-N- (N-o-nitrophenylsulpheny 1) -L-prolylurea(0.46 g, 44), m.p. 193-194" (Found: C, 60.8; H, 7.1;N, 11.8. CZ4H,,N40,S requires C, 60.7; H, 7.2; N, 11-8y0).Addition of ether to the ethyl acetate mother-liquor gavethe protected dipeptide mixed with the original amino-component.Repeated washing with M-sulphuric acid,followed by aqueous 3 sodium carbonate, and recrystal-lisation from ethyl acetate-ether gave N-o-nitrophenyl-sul~henyl-L-prolyl-u-benzyl~henylalanyl-w-nitro-~-arginine p-nitrobenzyl ester (V), m.p. 114-116" (Found: C, 56.7; H,5-4. C4,H,,N,010S requires C, 57-1 ; H, 5.2) in low yield.l8 R. A. Boissonnas, S. Guttmann, and P.-,4. Jaquenoud,Helv. Chim. Acta, 1960, 48, 1349.M. Bergmann and L. Zervas, Bev., 1938, 65, 1192J.C.S. Perkin IPeptides related to BrcsdykininN-o-Nitrophenylsulphenyl-L-phenylalanine dicyclohexyl-ammonium salt (3.95 g, 7-9 mmol) and w-nitro-L-argininep-nitrobenzyl ester hydrobromide l8 (3.43 g, 7.9 mmol) werecoupled in acetonitrile (1 10 ml) with the aid of dicyclohexyl-carbodi-imide (1.78 g, 8.65 mmol).Work-up as usual gaveN-o-nitrophe ny lsulp heny l- L-Phenylalany Z-u- nitro- L-argininep-nilrobenzyl ester (4-4 g, 85) ; a sample recrystallised fromethanol (70 recovery) had m.p. 96-96', aD25 -23.5"(c 1.0 in CHC1,) (Found: C, 51-5; H, 4-9. C2,H,,N,ODSrequires C, 51.4; H, 4.6). The crude ester (8.3 g, 12.7mmol) was kept for 1 min with hydrogen chloride (38 mrnol)in ethyl acetate (30 ml). Addition of ether (200 ml),reprecipitation from ethanol-ethyl acetate with ether, andrecrystallisation from ethanol-ether gave L-Phenylalanyl-w-nitro-L-arginine p-nitrobenzyl ester hydrochZoride (3.97 g,58), m.p.197-198", aD25 -6.0" (c 1.0 in H20) (Found:C, 49.0; H, 5.2; N, 18.2. C2,H2,C1N70, requires C, 49.1;H, 5.3; N, 18.2). Repetition of these procedures withthe appropriate carboxy-components (Scheme 1) gave thefollowing: N-o-nitro~henylsulphenyl-~-~rolyl-L-~henylaZanyl-a-nitro-L-arginine p-nitrobenzyl ester (75), m.p. 112-1 15'(from ethyl acetate-ether), -47.0" (c 1.0 in CHC1,)(Found: N, 16.8. C33H37Ng010S requires M, 17.0) ;L-prolyl-~-~henylalanyl-w-nitro-~-arginirte p-nitrobenzyl esterhydrochloride (70), m.p. 137-139' (from ethanol-ethylacetate), aID26 -17.6" (c 1.0 in HCO*NMe,) (Found: C,50.2; H, 5.4; N, 17.4. C2,H31N80, requires C, 50.4; H,5.6 ; N, 17.7 yo) ; N-o-nitrophenylsulphenyE~-seryl-L-prolyLL-phenylalanyl-o-nitro-L-arginine p-nitrobenzyl ester (50),m.p.104-108" (from chloroform-ether), ,IDz6 - 77.3'(c 1.0 in CHCl,) (Found: C, 50-9; H, 4.9; N, 16.8. C36H42-NlOOl2S requires C, 51.5; H, 5.1; N, 16.7); L-seryl-L-@olyl-L-phenylalanyl-w-nitro-L-arginine p-rtitrobenzyl esterhydrochloride (84y0), m.p. 139-142" (from ethanol-ethylacetate-ether), -33.0" (c 1.0 in HCO-NMe,) (Found:C, 48.9; H, 5.6; N, 17.0. C,,H4,C1N,010,H20 requires C,48.7; H, 5-7; N, 17.0).The following (Scheme 2) were prepared similarly: N-o-nitro~henyZsuZphenyZ-L-pyolyZgZyc~ne ethyl ester (89 ) , m . p.101-103" (from ethyl acetate-light petroleum), 0(ID19-17.0" (c 1.0 in EtOAc) (Found: C, 51.2; H, 5.4; N, 11.9.C,,H,,N,O,S requires C, 51.0; H, 5.4; N, 11.9); L-prolylglycine ethyl ester hydrochloride (90). m.p. 115"(from ethanol-ether), aIDlD -45.8' (c 2-4 in H20) (lit.,,m.p. 1 19-120°, - 39.5') ; N-o-nitrophenylsuZ$henyLL-ProZyl-L-prolyZglycine ethyl ester (go), m.p. 48-51"(from benzenelight petroleum), aIDlg -140" (G 1.0 inEtOAc) (Found: C, 53.8; H, 5.8; N, 12.1. C,OH~~N@,$requires C, 53.3; H, 5-8; N, 12.4) ; ~-p~~ZyZ-~-pr~lyl-glycine ethyl ester hydrochloride (88), m.p. ca. 85" (hygro-scopic) (from ethanol-ether) (Found : N, 12.5. C14HzhClN30, requires N, 12.6) ; N-benzyloxycarbonyl-a-nitro-L-arginyl-~-~rolyZ-~-p-prolylglycine ethyl ester (VII) (45y0), m.p.84" (from ethyl acetate-ethyl-light petroleum), aIDlD-38.5" (G 1.0 in EtOAc) (Found: C, 53.6; H, 6.5; N, 17.5.C2,H4ON8O9 requires C, 53.1; H, 6.4; N, 17.7y0).We thank Messrs. Parke, Davis and Co. Ltd., for a researchstudentship (to T. A. H.).2/1439 Received, 20th June, 1972120 H. N. Rydon and P. W. G. Smith, J . Chem SOL, 1966, 3642.0 Copyright 1972 by The Chemical Societ
机译:J.C.S. Perkin IPolypeptides.第二十部分 二环己基碳二酰亚胺法合成 a-苄基苯基丙氨酸肽作者:G. C. Barrett、P. M. Hardy、T. A. Harrow 和 H. N. Rydon,“埃克塞特大学化学系 EX4 4 0 0二环己基碳二酰亚胺似乎通常可用于合成 a-苄基苯丙氨酸的受保护二肽,以及将 a-苄基苯丙氨酰残基添加到较大肽的 N 末端。无论如何,它通常不适合向具有 N 端 a-苄基苯丙氨酰残基的肽中添加进一步的氨基酸残基,或用于使用具有 C 端 a-苄基苯基氨酰残基的肽进行偶联反应。a-苄基苯丙氨酰肽的合适 N 保护基团是苄氧羰基和邻硝基苯基磺酰基。乙酯不适合C保护,因为它们由于空间位阻而难以水解;2-甲基硫代乙酯不受此限制,可以成功使用。描述了对应于缓激肽中序列 6-9 和 1 4 的两种受保护肽的合成。本文所描述的工作最终目标是合成缓激肽类似物,其中第5位和第8位的苯丙氨酸残基被a-苄基苯基-丙氨酰[-NH*C(CH,Ph),*CO-]残基单独或一起取代。*尽管这一目标没有实现,但两条苄基链的存在引起了合成困难,这似乎值得记录和比较早期与其他aa-二取代氨基酸合成肽的工作。研究最充分的aa-二取代氨基酸asa肽组分是a-甲基丙氨酸,Kenner 2?3和Faust 475及其同事对其进行了肽合成。两组都发现,a-甲基丙氨酸及其衍生物中氨基的酰化受空间位阻的影响比此类化合物中被活化的羧基酰化的影响大得多,但这不是我们对a-*的经验缩写Bphe用于该残基。其他缩写是I.U.P.A.C.推荐的缩写(参见Biochem.Part XXI, B. Ridge, H. N. Rydon, and C. R. Snell, J.C.S.M. T. Leplawy, D. S. Jones, G. W. Kenner, and R. C. J., 1972, 126, 773)。Nb = P-NO,*C,H,*CH,.Perkin I , 1972, 2041.Sheppard, Tetrahedron, 1960, 11, 39.苄基苯丙氨酸.在较常见的N-保护基团中,苄氧羰基24和对甲苯基磺酰基均被成功使用。在羧基保护方面,叔丁酯更受欢迎,3 尽管也使用了甲基12p3和苄基*酯。在常用的偶联方法中,二环己基碳二酰亚胺,3*4混合的丙戊酸anh~dride,~,$-硝基苯酯,' a ~ i d e , ~ .~ 和酰氯 294 程序都已使用,并取得了不同程度的成功。本文介绍了我们应用二环己基碳二酰亚胺法合成a-苄基苯丙氨酸肽的经验;a-苄基苯丙氨酸的应用是通过Felkin的方法制备的,对二苄基乙酰乙酸乙酯的Schmidt反应的细节进行了修改,大大提高了中间体N-乙酰基-a-3的收率 D.S. Jones, G. W. Kenner, J. Preston, and R. C. Sheppard,J.Chem. SOC., 1965, 6227.4 G. Faust and 13.兰格,J .普拉克特。Chem., 1960, (4)11, 153.5 G. Faust and M. Kleppel, J. prakt.Chenz., 1960, (4)11, 123.6 J. F. Diehl 和 E. A. Young, J .药用素。Chem., 1964, 7 ,7 W. J. McGahreii 和 M. Goodman, Tetrahedron, 1967, 23,8 H. Felkin, Bull.Soc. chim.法国, 1959, 20.820.20171972NPSN P S-OH Hbenzylphenylalanine ethyl ester.α-苄基苯基丙氨酸与邻硝基苯磺酰氯在碱性溶液中反应制备N-o-硝基苯磺酰磺酰衍生物没有遇到困难;该衍生物广泛用于偶联反应,也作为中间体制备α-苄基苯丙氨酸的N-琥珀酰亚胺酯和Z-甲硫基乙酯,在二环己基碳二酰亚胺存在下与邻硝基精氨酸$-硝基苄酯在氯仿溶液中顺利偶联,得到70%的受保护二肽(I)的收率。N-o-硝基苯基-瘜基苯基-01-苄基苯丙氨酸与L-丝氨酰-L-脯氨酰-L-苯丙氨酰-O-硝基-L-精氨酸-P-硝基苄酯(VI)在乙腈中的类似偶联同样得到70%的受保护的Ar-o-硝基苯磺酰-a-苄基苯丙氨酸OH H' ONbONbONbNO2NO2,NO2I在ps-Bp he*Arg.ON b Nps*Bphe*Ser*Pro*Phe*Arg. ON bNPSpentapeptide (11)。这些结果表明,在逐步肽合成中,二环己基碳二酰亚胺法可能有助于在生长肽链的N末端引入a-苄基苯基-丙氨酸残基。然而,即使存在添加的1,2,4-三唑10和N-羟基琥珀酰亚胺,尝试将受保护的二肽N-苄氧羰基-甘氨基-a-苄基苯丙氨酸与L-丝氨酰-L-脯氨酰-L-苯丙氨酸-o-硝基-L-精氨酸9-硝基苄基酯(VI)偶联失败;l1因此,该方法通常不适用于通过涉及含有C末端a-苄基苯基氨酰残基的肽的片段缩合过程合成a-苄基苯丙氨酸肽。二环己基碳二酰亚胺法在涉及α-苄基苯基氨丙酰残基的茶氨基的偶联反应中同样价值有限。因此,尽管通过这种方法将适当的羧基组分与a-苄基苯丙氨酸酯偶联,但得到了受保护的二肽(111;R = et), (111;R =CH,-CH,-SMe)和(IV)的收率分别为75%、90%和75%,N-o-硝基苯基磺酰-L-脯氨酸与a-苄基苯基丙氨酰-w-硝基-L-精氨酸对硝基苄酯之间的相应反应得到了非常低的受保护的三肽(V),N-酰基脲Z*Gly.Bphe*OR Z*Pro*Bphe*OE tNps*Pro*Bphe*Arg(NO,) *ON b衍生自羧基组分作为主要产物,并试图将N-苄氧羰基-和N-o-硝基苯磺酰-甘氨酸与a-苄基-苯丙氨酰-L-丝氨酰-L-脯氨酰-w-硝基-L-精氨酸 $-硝基-L.Zervas, D. Borovas, and E. Gazis, J .Amer. Chem. Soc.,1963, 85, 3660.lo H. C. Beyermann 和 W. Maassen-van der Brink, ActuChiin.中国科学研究院, 1965, 44, 187.(111) (IV)(V>' ONbNO2苄酯完全失效,即使添加1,2,4-三唑。综上所述,我们的研究结果表明,虽然二环己基碳酰亚胺不普遍适用于合成a-苄基苯丙氨酸肽的偶联试剂,但它可以成功地用于合成a-苄基苯丙氨酸的二肽和含有该氨基酸N端残基的较大肽。正如预期的那样,与NPSZSer Pro PheNPS OEtOH H OEtOE tOE tSCHEME 1I I z v OEt(m)SCHEME 2C-脱保护相比,a-苄基苯丙氨酸肽的N-脱保护受空间位阻的影响较小。氯化氢二恶烷和乙酸乙酯分别处理,顺利、高收率地从肽(I)和(11)中除去邻硝基苯磺基,催化氢解处理(IV)中除去苄氧羰基。乙酯(111;R = Et) 抵抗所有用酸 l2 或碱水解的尝试,l1 F. Weygand, D. Hoffmann, and E. Wiinsch, 2.Naturforsch.,1966, 21b, 426.la J. R. Vaughan 和 J. A. Eichler, J .阿马尔。Chem. SOC.,1964, 76, 24742636 J.C.S.Perkin 在这方面与相应的a-甲基丙氨酸衍生物不同;2*6 这种困难确实是由于空间位阻所致,这一事实表明 (111;R = CH,-CH,*SMe) 容易给出游离酸 (111;R = H) 在室温下 pH 值为 10 的丙酮水溶液中,13 已知该反应涉及远离氨基酸残基的 a-碳原子的点的攻击.l*受保护的四肽 (VI) (方案 1) 和 (VII) (方案 2) 的合成细节在实验部分给出了预测合成缓激肽类似物所需的细节;二环己基碳二酰亚胺用于所有偶联反应。实验所有肽和中间体的纯度均由t.1.c.on Kieselgel G.确认,具有游离氨基的化合物通过o.1570 茚三酮 正丁醇 100“;具有N-末端a-苄基-苯丙氨酸残基的肽产生非常弱的茚三酮反应l5,并且通过氯-淀粉-碘化物法检测得最好,N-保护肽也是如此.ls有机溶液在硫酸镁上干燥,并在旋转蒸发器中减压浓缩或蒸发.轻质石油是fractionb.p。40-60 英寸,除非另有说明。用ETL-NPL旋光仪测量旋光度,型号143,(光程长度为1厘米).a-苄基苯丙氨酸及其衍生物以下程序的产量比通过未修饰的Felkin方法获得的产量(约25%)要好得多.8浓硫酸(36.4ml,0.68mol)和叠氮化钠(34.3g,0.48mol)交替加入到重结晶乙基二苄基乙酰乙酸酯(105g, 0.34 mol)在再蒸馏的三氯乙酸(700 g)中,A t 75-85'。将混合物在室温下保存过夜,然后倒入冰水中(1,1)。将沉淀的固体溶解在乙醚中,溶液用SM-碳酸钠和水洗涤,干燥,浓缩。从溶液中结晶的产物(82克,两种作物)由环己烷醚重结晶;由此得到的N-乙酰基a-苄基苯丙氨酸乙酯(78 g, 75%) 具有 m.p.121-123“ (lit.,8 124-125”) ;几种制剂的平均收率为72%;三氯乙酸的质量很重要。用Felkin 8gave a-苄基苯丙氨酸,熔点307-308“(Iit.,l7 307-308”)方法水解(发现:N,5.4.计算C,,H,,NO,:N,5.5%),收率为85-95%;将611-盐酸快速加入到酸性2~-氢氧化钠的热溶液中而得到的盐酸盐的熔点为314“(lit.,8 314”)(发现:N,4.6.计算的Cl,H,,CINO,:N,4.8%)。将盐酸盐(15g,51mmol)乙醇(300ml)的悬浮液用干氯化氢饱和,然后回流3小时。蒸发和重复该过程的两次得到固体残留物,用热氯仿提取,留下未溶解的起始材料(5.2g,35%)。将乙醚加入氯仿溶液中,然后对l3 M.J. S. A. Amaral, G. C.巴雷特、HN Rydon 和 J.H.威利特,J .化学SOG.( C ) , 1966, 807.l4 P. Mamalis 和 H. N. Rydon, J .化学溶胶,1955,1049.氯仿醚,得到a-苄基苯丙氨酸乙酯盐酸盐(9.6g,58%),熔点176175“(发现:C,67.8;H,6.9;N,4.4。C1,H,,CINO,需要C,67-6;H,6.9;将邻硝基苯基磺酰氯(10.5 g,55 mniol)和2~-氢氧化钠交替加入到a-苄基苯丙氨酸(12.75 g,50 mmol)的2~-氢氧化钠(25 ml)和二恶烷(62.5 ml)的搅拌溶液中,反应过程中pH值保持在8.5左右。将溶液用水(500ml)稀释并过滤。将滤液酸化(刚果红)与0.5hl-硫酸和胶状沉淀物吸收乙酸乙酯,用水洗涤,干燥。将所得溶液浓缩至250ml,并用二环己胺(10ml,50mmol)处理。18 h a t O“后,将分离出的黄色固体从乙醇中滤去并重结晶,得到N-o-硝基苯ZsuZphenyZ-a-苄基苯丙氨酸二环己基氨酸盐(25.2 g,86%),熔点198-199”(发现:C,69.3;H,7.4;N, 7.5.C,,H,,N,O,S 需要 C, 69-2;H,7.4;X,7.1%)。将上述盐(5.9g,10mmol)用乙乙酸酯(30ml)和0.25~-硫酸(50ml)振荡。分离乙乙酸盐溶液,用水洗涤,干燥,蒸发。残留物在真空干燥器中干燥,用三乙胺(2.42ml,17-5mmol)和2-氯乙基甲基硫醚(1-65g,15mmol)在70“下加热24小时;然后加入三乙胺(1.38ml,10mmol)和2-氯乙基甲基硫醚(1.1g,10mmol),并将混合物再加热36小时。 然后加入更多的胺(0.69ml,5mmol)和硫化物(0.55g,5mmol)。再加热36 h后,将产物溶于乙酸乙酯中;溶液先后用水、0.5~-硫酸、饱和碳酸氢钠和水洗涤,干燥,蒸发。将残留物(4.0 g)溶解在无水乙酸乙酯(18 ml)和乙醚(18 ml)的混合物中,用新制备的无水氯化氢(25 mmol)乙酸乙酯溶液(7.5毫升),2分钟后用无水乙醚(180毫升)浸入。蒸发至干燥,用乙醚研磨残留物,并用乙酸乙酯重结晶得到a-苄基-苯基丙氨酸2-甲硫乙酯盐酸盐(2.4 g,65y0),熔点154-155“(发现:C,62.1;H,6-8;N, 3-9.C1,H,4C1N0,S需要C, 62-4;H,6-6;N,3.8%)。将N-羟基琥珀酰亚胺(0.50g,4.35mmol)加入到N-o-硝基苯磺酰-a-苄基苯基丙氨酸[来自二环己基铵盐(2.56g,4.35mmol)]的二恶烷(20ml)溶液中。加入二环己基-碳二酰亚胺(0.90g,4.36mmol)溶液,并将混合物在室温下振荡18小时。然后过滤掉双环己基脲,滤液蒸发,残留物在少许乙酸乙酯中以0“处保存过夜。过滤、蒸发滤液和重结晶丙-2-01-轻质石油中的残留物得到N-o-硝基苯磺酰-a-苄基苯丙氨酸N-琥珀酰亚胺酯(1.90 g,87%),熔点73-75“(发现:C,61.1;H, 4.8;N,7.9。C,,H,,N,O,S 要求 C, 61.8;H, 4.6;N,8.3%);该酯是二晶的,更稳定的形式,m.p.187O,通过丙酮重结晶获得(发现:C,61.6;H, 4.6;N,8.1%)。将该酯(1-67 g,3.3 mmol)用氯化氢(9.9 mmol)保持30 s,inl5 Cf. L. Tailleur and L. Berlinguet, Canad. J .陈, 1961,39, 1309;J. Org. Chem., 1962, 27, 653.l6 H. N. Rydon and P. W. G. Smith, Natuve, 1962, 169, 922.l7 L.H. Goodson, I. L. Honigberg, J. J. Lehman, and W.H.Burton, J. Org. Chenz., 1960, 25, 19201972 2637二恶聚糖(23毫升)。然后加入乙醚(100ml),从氯型醚中收集沉淀固体并重结晶,得到u-苄基苯丙氨酸N-琥珀酰亚胺酯盐酸盐(1-11 g,87y0),熔点151-152“(发现:C,58.8;H,5.3;N,6.9。C20H,lClN,0,,H,0 需要 C ,59.0;H,5.7;N,6.9%)。将U-苄基苯基丙氨酸-硝基-L-精氨酸对硝基苄酯氢溴酸盐l8(720mg,1-65mmol)和N-o-硝基苯磺酰-u-苄基苯基丙氨酸二环己基铵盐(975mg,1-65mmol)的肽在氯仿(60ml)中一起振荡2-5小时。然后加入二环己基碳二酰亚胺(375mg,1-82mmol)英寸氯佛尼(10ml),并将混合物摇匀过夜。加入一滴醋酸,滤除沉淀的二环己基脲。滤液先后用水、间盐酸、水、饱和碳酸氢钠溶液洗涤,干燥,蒸发。将残留物吸收到少许丙酮中,在O“下保存过夜,并从更多的尿素中过滤。滤液的蒸发和乙醇残留物的重结晶反应得到N-o-硝基苯基-磺酰基-u-苄基~炔氨酰-o-硝基-L-精氨酸对硝基苄酯(I)(870 mg,71%),熔点99-102“,[aIDl9 - 10-0”(EtOAc中的c 1.0)(发现:C,56-3;H,5.3;N,14.9。C,,H,,-N,O,S需要C,56.4;高,4.9;N,15.1y0)。将该酯(1-4g,1.9niniol)与氯化氢(5.6mmol)的二恶烷(23ml)溶液一起保存1.5分钟。加入乙醚(50ml),在0“处过滤30分钟后,用乙乙酸酯和乙醚研磨,然后用乙醇-醚重结晶得到a-苄基苯丙氨酰-o-硝基-L-精氨酸对苄基苄酯盐酸盐(760mg,64%),熔点213-215”,[,1,lB - 16.0“(在HCO-NMe中c1-0)(发现:c,55.7;H,5.5;N,15.5。C,gH,4C1N70,需要C,56.5;H,5.5;N,15.6%)。AT-邻硝基苯基磺酰基-u-苄基苯丙氨酸二环己基离子盐(850mg,1-44mmol)和L-丝氨酰-L-脯氨酰-L-苯丙氨酰-o-硝基-L-精氨酸对硝基苄酯盐酸盐(p.2638)(1.04g,1-44mmol)在乙腈(20nil)中振荡2小时。然后加入乙腈(6ml)中的二环己基碳二酰亚胺(320nig,1.51mmol),并继续振荡过夜。像往常一样,用碳酸钠代替碳酸氢钠进行碱洗,然后用乙醚沉淀乙酸甲酯,得到N-o-硝基苯基亚磺酰-u-苯基19苷~~1-~-丝氨基-~-氨酰基-L-苯基~lanyl-o-硝基-~-精氨酸对硝基苄酯(11)(1.1 g,71%),熔点1 2 A126“,[u]~~~~-13.0'(c1.0在CHCl中,)(发现:C,57-3;H,5 .5 ;N,14.4。C5,H5,Nl1O,,S需要C,58-0;H,5.3;N,14.5%)。将该酯(600mg,0-56mmol)与氯化氢(1-67mmol)在乙酸乙酯(15ml)中保存30秒。加入乙醚(80ml)和乙醇乙酸乙酯用乙醚重沉淀得到u-苄基苯丙氨酰-~-丝氨酰-~-脯氨酰-L-苯丙氨酰-o-硝基-L-精氨酸对硝基苄酯Jijtdrochloride(470mg,87y0),m.p.155-157“,[uID25-44-6”(c 0-6在HCO-NMe中,)(发现:C,55.8;H,5.7;K, 14.4.C4,H55C1N1,011,2H,0 需要 C, 55-5;H, 6.0;N,14.1y0)。将二环己基碳二酰亚胺(3.45g,16.5mmol)少量加入到由N-苄氧羰基甘氨酸l9(3.135g,15mmol),三乙胺(2.1ml,15mmol),a-苄基苯丙氨酸乙酯盐酸盐(4.80g,15mmol)和氯仿(105ml)制备的溶液中。将混合物在室温下摇匀24小时,然后以通常的方式进行处理。重结晶乙酸甲酯-轻石油得到N-苄氧基cavbonyl-甘氨酰-u-苄基苯基丙烯?。乙酯(I11;R = et) (5.36g, 75y0), m.p.81-82' (发现: C, 70.4;高,6.5;N,5.8.CZ8H,,N,O,需要C,70.9;H, 6.4;N,5.9%)。N-苄氧羰基-L-脯氨酰-u-苄基苯丙氨酸乙酯(IV)以70%的收率制备为不可结晶的树胶,在95%丁基水溶液(25英里)中氢化4小时。过滤、蒸发、用空灵氯化氢处理以及乙醇-醚-轻质石油再结晶得到L-脯氨酰-u-苄基苯基-丙氨酸乙酯盐酸盐(0.4 g,50%),熔点176“,[uID19 +24.0”(EtOH中c 1.0)(发现:C,65.9;H,6.9;N,6.7。C2,H,,C1N20,需要C,66.2;H,7-0;N,6.7%)。将二环己基碳二酰亚胺(650mg,3.15mmol)的乙酰腈(5ml)加入到由N-苄氧羰基甘氨酸(630mg,3.0mmol)、ct-苄氧基苯丙氨酸2-甲硫乙酯盐酸盐(1 100mg,3.0mmol)和三乙胺(0.415 ml,3.0 mmol)乙腈(10 ml)制备的溶液中。在室温下18小时后,像往常一样处理混合物,并将溶解在丙酮中的产物用Zeo-Karb(H +形式;2×3.0g)振荡18小时。滤液的蒸发得到受保护的肽(111;R = CH,*CH,*SMe)为胶质(1.41 g,goyo),不能诱导结晶。用甲基碘(2mi,32.5mmol)再熔化3小时;然后加入更多甲基碘化物(2 ml),然后在 12 小时后再加入 1 ml。再回流3小时后,溶液蒸发,残留物用乙醚研磨。从丙酮重结晶得到N-苄氧羰基甘氨酰-u-苄基苯丙氨酸 2-甲硫乙基酯甲硫代物(1.25 g,70%),熔点 104-105“(发现:N,3.9.C,,H,,IN,O,S 需要 N,4.2%)。将未重结晶的甲硫化物(5.8 g,11.1 mmol)溶于25%丙酮水溶液(20 ml)中,用@5~-羟基钠t pH 10滴定45分钟;然后停止了碱的消耗。过滤、用O.25~-硫酸酸化、从乙醇水溶液中重结晶得到N-苄氧基羰基甘氨酰-a-苄基~炖氨酸(111;R = H) (2.73 g, 54% 总体), m.p.171-172'(发现:C,70.1;主场,6-0;N,6.2。C2,Hz,N,05 需要 C,69.9;H,5.9;N,6.3%)。N-o-硝基苯基磺酰-L-脯氨酸二环己基鎓盐(1-0g,2-22mmol)和a-苄基苯丙氨酰-O-硝基-L-精氨酸纤维硝基苄酯盐酸盐(1-4g,2-22mmol)在氯仿(30ml)中一起振荡1小时,加入二环己基碳酰亚胺(0-51g,2.44mmol)英寸氯仿(10毫升),并将混合物振荡60小时。滤除沉淀的二环己基脲,滤液蒸发至干。将残留物取于乙酸乙酯中,照常洗涤,浓缩至10ml。在5“处12小时后,将结晶沉淀物滤除并从乙醇中重结晶,得到NN'-二环己基-N-(N-o-硝基苯磺酰亚磺酸1)-L-脯氨酸(0.46 g,44%),熔点193-194”(发现:C,60.8;H,7.1;N,11.8。CZ4H,,N40,S需要C,60.7;H, 7.2;N,11-8y0)。将乙醚加入到乙酸乙酯母液中,得到与原氨基组分混合的受保护的二肽。用间硫酸反复洗涤,然后用3%碳酸钠水溶液洗涤,用乙酸乙酯醚重结晶,得到N-o-硝基苯基-磺~苯基-L-脯氨酰-u-苄基~禾氨酰-w-硝基-~-精氨酸对硝基苄酯(V),熔点114-116“(发现:C,56.7;H,5-4.C4,H,,N,010S 需要 C, 57-1 ;H, 5.2%) 低产.l8 R. A. Boissonnas, S. Guttmann, and P.-,4.雅克诺德,赫尔夫。奇姆。Acta, 1960, 48, 1349.M. Bergmann and L. Zervas, Bev., 1938, 65, 1192J.C.S.在二环己基-碳二酰亚胺(1.78 g, 8.65 mmol)的帮助下,在乙腈(1 10 ml)的帮助下,将与BrcsdykininN-o-硝基苯基磺酰-L-苯丙氨酸二环己基-铵盐(3.95 g,7-9 mmol)和w-硝基-L-精氨酸-硝基苄酯氢溴酸盐l8(3.43 g,7.9 mmol)相关的Perkin相关IP肽偶联在乙腈(1 10 ml)中。像往常一样检查给予N-o-硝基苯甲酸酯(4-4克,85%);重结晶的乙醇样品(回收率为70%)的熔点为96-96',[a]D25-23.5“(CHC1中的c 1.0)(发现:C,51-5;H,4-9。C2,H,,N,ODS需要C, 51.4;H,4.6%)。将粗酯(8.3g,12.7mmol)与氯化氢(38mrnol)的乙酸乙酯(30ml)溶液保持1分钟。加入乙醚(200ml),用乙醚从乙醇-乙酸乙酯重沉淀,从乙醇-醚再结晶得到L-苯丙氨酰-w-硝基-L-精氨酸对硝基苄酯盐酸盐(3.97 g,58%),熔点197-198“,[a]D25-6.0”(H20中的c 1.0)(发现:C,49.0;H, 5.2;N,18.2。C2,H2,C1N70,需要C,49.1;H,5.3;N,18.2%)。用适当的羧基组分重复这些程序(方案1)得到以下结果:N-o-硝基~henylsulphenyl-~-~rolyl-L-~henylaZanyl-a-nitro-L-精氨酸对硝基苄酯(75%),熔点112-1 15'(来自乙酸乙酯醚),-47.0“(CHC1中的c 1.0),)(发现:N,16.8。C33H37Ng010S需要M,17.0%);L-脯氨酰-~-~炔氨酰基-w-硝基-~-精氨酸对硝基苄酯盐酸盐 (70%), 熔点 137-139' (来自乙醇-乙酰乙酸酯), [aID26 -17.6“ (c 1.0 in HCO*NMe,) (发现:C,50.2;高,5.4;N,17.4。C2,H3&1N80,需要C,50.4;H,5.6 ;N, 17.7 岁) ;N-o-硝基苯磺基E~-丝氨酰基-L-脯氨酸LL-苯丙氨酰-邻硝基-L-精氨酸对硝基苄酯(50%),分子号104-108“(来自氯仿醚),[,IDz6-77.3'(CHCl中的c 1.0,)(发现:C,50-9;高,4.9;N,16.8。C36H42-NlOOl2S 需要 C, 51.5;H, 5.1;N,16.7%);L-丝氨酰基-L-@olyl-L-苯丙氨酰基-w-硝基-L-精氨酸对-rtitrobenzyl esterhydrochloride (84y0), m.p. 139-142“ (来自乙醇-乙基乙酸酯-醚), -33.0” (c 1.0 in HCO-NMe,) (发现:C, 48.9;H, 5.6;N,17.0。C,,H4,C1N,010,H20 需要 C,48.7;H,5-7;N,17.0%)。以下(方案2)的制备方法类似:N-o-硝基~henyZsuZphenyZ-L-pyolyZgZyc~ne乙酯(89 %),m。p.101-103“(来自乙酸乙酯轻质石油),[0(ID19-17.0”(EtOAc中的c 1.0)(发现:C,51.2;高,5.4;N, 11.9.C,,H,,N,O,S 需要 C, 51.0;高,5.4;N,11.9%);L-脯氨酰甘氨酸乙酯盐酸盐(90%)。m.p. 115“(来自乙醇醚), [aIDlD -45.8' (c 2-4 in H20) (lit.,%,m.p. 1 19-120°, - 39.5') ;N-o-硝基苯基苏Z$henyLL-ProZyl-L-脯氨酸甘氨酸乙酯(go%),熔点48-51“(来自苯轻质石油),[aIDlg -140”(G 1.0 inEtOAc)(发现:C,53.8;H, 5.8;N,12.1。C,OH~~N@,$requires C, 53.3;H, 5-8;N, 12.4%) ;~-p~~ZyZ-~-pr~lyl-甘氨酸乙酯盐酸盐 (88%), m.p. ca. 85“ (hygro-scopic) (from ethanol-ether) (发现 : N, 12.5.C14HzhClN30, 需要 N, 12.6%) ;N-苄氧羰基-a-硝基-L-精氨酰-~-~rolyZ-~-p-脯氨酰甘氨酸乙酯(VII)(45y0),m.p.84“(来自乙酸乙酯-乙基轻质石油),[aIDlD-38.5”(EtOAc中的G 1.0)(发现:C,53.6;高,6.5;N,17.5.C2,H4ON8O9需要C,53.1;H, 6.4;N, 17.7y0)。我们感谢 Parke, Davis and Co. Ltd. 先生(向 T. A. H. 提供研究奖学金)。[2/1439 6月20日收到1972120,H. N. Rydon 和 P. W. G. Smith, J.Chem SOL, 1966, 3642.0 版权所有 1972 The Chemical Societ

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号