...
首页> 外文期刊>American Journal of Physiology >Selective permeability barrier to urea in shark rectal gland.
【24h】

Selective permeability barrier to urea in shark rectal gland.

机译:

获取原文
获取原文并翻译 | 示例

摘要

Elasmobranchs such as the dogfish shark Squalus acanthius achieve osmotic homeostasis by maintaining urea concentrations in the 300- to 400-mM range, thus offsetting to some degree ambient marine osmolalities of 900-1,000 mosmol/kgH(2)O. These creatures also maintain salt balance without losing urea by secreting a NaCl-rich (500 mM) and urea-poor (18 mM) fluid from the rectal gland that is isotonic with the plasma. The composition of the rectal gland fluid suggests that its epithelial cells are permeable to water and not to urea. Because previous work showed that lipid bilayers that permit water flux do not block flux of urea, we reasoned that the plasma membranes of rectal gland epithelial cells must either have aquaporin water channels or must have some selective barrier to urea flux. We therefore isolated apical and basolateral membranes from shark rectal glands and determined their permeabilities to water and urea. Apical membrane fractions were markedly enriched for Na-K-2Cl cotransporter, whereasbasolateral membrane fractions were enriched for Na-K-ATPase. Basolateral membrane osmotic water permeability (P(f)) averaged 4.3 +/- 1.3 x 10(-3) cm/s, whereas urea permeability averaged 4.2 +/- 0.8 x 10(-7) cm/s. The activation energy for water flow averaged 16.4 kcal/mol. Apical membrane P(f) averaged 7.5 +/- 1.6 x 10(-4) cm/s, and urea permeability averaged 2.2 +/- 0.4 x 10(-7) cm/s, with an average activation energy for water flow of 18.6 kcal/mol. The relatively low water permeabilities and high activation energies argue strongly against water flux via aquaporins. Comparison of membrane water and urea permeabilities with those of artificial liposomes and other isolated biological membranes indicates that the basolateral membrane urea permeability is fivefold lower than would be anticipated for its water permeability. These results indicate that the rectal gland maintains a selective barrier to urea in its basolateral membranes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号