...
首页> 外文期刊>The Journal of Chemical Physics >~13C-~13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination
【24h】

~13C-~13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as ~(13)C_~(13)C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled 1T-pulse train in which a rotor-synchronous 1T pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT -fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of 1_13CAla- 1_13CGly-Gly was determined to be 3.27 A, which agrees well with the value of 3.20 A obtained by x-ray diffraction. Also, two-dimensional (2D) ~(13)C/~(13)C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally ~(13)C- and ~(15)N-labeled Alzheimer's fJ-Amyloid fragments, A/316-22 (residues 16-22 taken from the 40-residue A/3 peptide) in which Leu-17 through Ala-21 are uniformly ~(13)C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D ~(13)C/~(13)C chemical-shift correlation patterns specific to amino-acid types. Examination of the obtained 13C chemical shifts revealed the formation of fJ-strand across the entire molecule of A/316-22. Possibility of high throughput determination of global main-chain structures based on ~(13)C shifts obtained from 2D ~(13)C/~(13)C chernical-shift correlation under very fast MAS is also discussed for uniformly/segmentally ~(13)C-labeledprotein/peptide samples.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号