首页> 外文期刊>Biophysical reviews >Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology
【24h】

Serial femtosecond crystallography at the SACLA: breakthrough to dynamic structural biology

机译:SACLA的连续飞秒晶体学:动态结构生物学的突破

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

X-ray crystallography visualizes the world at the atomic level. It has been used as the most powerful technique for observing the three-dimensional structures of biological macromolecules and has pioneered structural biology. To determine a crystal structure with high resolution, it was traditionally required to prepare large crystals (> 200 μm). Later, synchrotron radiation facilities, such as SPring-8, that produce powerful X-rays were built. They enabled users to obtain good quality X-ray diffraction images even with smaller crystals (ca. 200-50 μm). In recent years, one of the most important technological innovations in structural biology has been the development of X-ray free electron lasers (XFELs). The SPring-8 AngstromCompact free electron LAser (SACLA) in Japan generates the XFEL beam by accelerating electrons to relativistic speeds and directing them through in-vacuum, shortperiod undulators. Since user operation started in 2012, we have been involved in the development of serial femtosecond crystallography (SFX) measurement systems using XFEL at the SACLA. The SACLA generates X-rays a billion times brighter than SPring-8. The extremely bright XFEL pulses enable data collection with microcrystals (ca. 50-1 μm). Although many molecular analysis techniques exist, SFX is the only technique that can visualize radiation-damage-free structures of biological macromolecules at room temperature in atomic resolution and fast time resolution. Here, we review the achievements of the SACLA-SFX Project in the past 5 years. In particular, we focus on: (1) the measurement system for SFX; (2) experimental phasing by SFX; (3) enzyme chemistry based on damage-free room-temperature structures; and (4) molecular movie taken by time-resolved SFX.
机译:X射线晶体学在原子水平上可视化世界。它已被用作观察生物大分子三维结构的最强大技术,并开创了结构生物学。为了确定高分辨率的晶体结构,传统上需要制备大晶体(> 200 μm)。后来,建造了产生强大X射线的同步辐射设施,例如SPring-8。它们使用户能够获得高质量的X射线衍射图像,即使是较小的晶体(约200-50μm)。近年来,结构生物学中最重要的技术创新之一是X射线自由电子激光器(XFEL)的发展。日本的SPring-8埃紧凑型自由电子LAser(SACLA)通过将电子加速到相对论速度并引导它们通过真空中的短周期波动器来产生XFEL束。自 2012 年开始用户运营以来,我们一直在 SACLA 使用 XFEL 参与开发系列飞秒晶体学 (SFX) 测量系统。SACLA 产生的 X 射线比 SPring-8 亮 10 亿倍。极其明亮的XFEL脉冲能够使用微晶(约50-1μm)收集数据。尽管存在许多分子分析技术,但SFX是唯一可以在室温下以原子分辨率和快速时间分辨率可视化生物大分子无辐射损伤结构的技术。在这里,我们回顾了SACLA-SFX项目在过去5年中取得的成就。我们特别关注:(1)SFX的测量系统;(2)SFX的实验阶段;(3)基于无损伤室温结构的酶化学;(4)时间分辨SFX拍摄的分子电影。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号