首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Fluorinations with potassium tetrafluorocobaltate(III). Part VI. Fluorination of pyridine and 4-methylpyridine
【24h】

Fluorinations with potassium tetrafluorocobaltate(III). Part VI. Fluorination of pyridine and 4-methylpyridine

机译:用四氟钴酸钾(III)进行氟化反应。第六部分.吡啶和4-甲基吡啶的氟化反应

获取原文
获取外文期刊封面目录资料

摘要

1732 J.C.S. Perkin IFluorinations with Potassium Tetrafluorocobaltate( 111). Part V1.l Fluori-nation of Pyridine and 4-MethylpyridineBY Paul L. Coe,' J. Colin Tatlow, andBox 363, Birmingham B15 2TTMichael Wyatt, Chemistry Department, University of Birmingham, P.O.Pyridine has been fluorinated over KCo"F, to give a mixture largely of ring-opened products. The main com-ponents isolated were (Z)-undecafluoro-2-atahex-2-ene (I), (Z)-2H-1 -bistrifluoromethylaminotetrafluoroprop-1 -ene (11), (E) -2H-1 -bistrifluoromethylaminotetrafluoroprop-1 -ene (111), (Z) -5H-decafluoro-2-azahex-2-ene(IV), (2Z,4€) -4H,5H-heptafluoro-2-azahexa-2,4-diene (V), (22.42) - 5H-octafluoro-2-azahexa-2.4-diene (VI),(2Z,4€)-5-bistrifluoromethylamino-octafluoro-2-azahexa-2,4-diene (VII), (2Z,4Z)-5-bistrifluoromethylamino-octafluoro-2-azahexa-2.4-diene (VIII), and 3H-1 -difluoromethylheptafluoropyrrolidine( IX).In a similarmanner, fluorination of 4-methylpyridine gave the analogous compounds (Z) -5-trifluoromethyldeafluoro-2-aza-hex-2-ene (X). (Z) -5-trifluoromethyloctafluoro-2-azahexa-2,4-diene (XI), (Z)-5-methyldecafluoro-2-azahex-2-ene (XII). and (Z) -5-difluoromethyldecafluoro-2-azahex-2-ene (XIII) as major components.IN previous papers in this series we have describedthe fluorinations of benzene,2 naphthalene: ketones:and esters and acid fluorides by KComF,, the resultsdiffering significantly from those obtained using COF,.We have now extended our studies of the former reagentto the fluorination of pyridine and 4-methylpyridine.Although pyridine and its derivatives have suc-cessfully been fluorinated by the electrochemicalmethod to give polyfluoropiperidine, and variouspolyfluoropyridines were prepared by exchange pro-cesses,' attempts to fluorinate pyridines by usingtransition metal fluorides have given poor results.Pyridine and COF, at 360" gave8 perfluoropiperidineas the only isolable product in 0.2 yield, 2,6-dimethyl-pyridine givingg a 5 yield of the correspondingpexfluoropiperidine. In related work lo 2-fluoropyri-dine with elemental fluorine yielded a complex mixtureof breakdown products and a little perfluoropiperdine.We have found that fluorination of pyridine overthe new reagent KCoF, at 210-230" gave a complexmixture of products containing nine main com-ponents.Separation of the mixture was difficultsince some decomposition with deposition of crystalsoccurred on standing even for a short time at roomtemperature, and also normal fractional distillationgave rise to extensive decomposition. The mixturewas finally fractionated into cuts each of which con-tained a substantial percentage of one of the majorcomponents, by using rapid take-off and careful heatingon an oil-bath, so as to keep the flask temperature to aminimum. Further purification could be carried outby g.1.c. and the nine major components were all iso-lated (see the Table). The crystals formed on decom-position were identified by elemental analysis andspectroscopy as 4,4,4- t rifluoro-N- t rifluoromet h y lcr o t on-1 Part V, J.Burdon, J. R. Knights, I. W. Parsons, and J. C.2 P. L. Coe, R. G. Plevey, and J. C. Tatlow, J. Chem. SOC. (C),3 P. L. Coe, R. M. Habib, and J. C. Tatlow, in preparation.4 R. D. Bagnall, P. L. Coe, and J. C . Tatlow, J.C.S. Perkin I,6 R. D. Bagnall, P. L. Coe, and J. C. Tatlow, submitted for6 J. H. Simons, J. Electrochem. SOC., 1949, 95, 47.7 R. D. Chambers, J. Hutchinson, and W. K. R. Musgrave,Tatlow, J. Fluorine Chem., in the press.1969, 1060.1972,2277.publication in J . Fluorine Chem.J . Chem. SOC., 1964, 3673.amide which presumably arises from hydrolysis ofcompound (V) (see below).The lowest boiling component was shown by compari-son of its i.r. and n.m.r. spectra to be the known undeca-fluoro-2-azahex-2-ene (I) with a chemical shift valuefor the imino-trifluoromethyl groups in agreement withthat given by Haszeldine l1 rather than that of Muller.12On the basis of the 19F n.m.r. spectrum we assign thestereochemistry of the CF,N=CF double bond as 2.13The reasoning follows that of Ogden and Mitsch14for compounds containing the CF,N=CF group.Byanalogy with fluoro-olefins, where the CF, groupsshowed a signal in the range 57.3-57-7 p.p.m. (shiftrelative to CCGF) with a doublet splitting of 13.3-14.3 Hz they ascribed cis (2) stereochemistry, whilstwhere peaks occurred at 54-2-56.8 p.p.m. with a coup-ling of ca. 6 Hz, trans ( E ) stereochemistry was assumed.In compound (I), resonance occurred at 57.3 p.p.m.with a coupling of 14 Hz, indicating that the compoundhad 2 stereochemistry. This pattern was repeatedfor all the imines isolated from this fluorination.The i.r.spectrum of the second component isolated(11) indicated that there was no CF,N=CF groupsince the band at ca. 1770 cm-l14 was absent, but aband at 1725 cm-l suggested a CHKF group. Oxida-tion of (11) with potassium permanganate in acetoneafforded trifluoroacetic acid, identified as its S-benzyl-isothiouronium salt, suggesting the presence of a vinylicCF, group. The mass spectrum gave a peak at mle246 and a fragmentation pattern consistent with thestructure (CF,),NCF=CHCF, (11). This was supportedby elemental analysis, and lH and laF n.m.r. spectralanalysis. The stereochemistry of the double bond wasindicated by the n.m.r.spectra. The olefinic protonshowed two couplings, 21.8 and 6-5 Hz, the value 21.8* R. N. Haszeldine, J. Chem. SOC., 1960, 1966.@ R. N. Haszeldine, J. Chem. SOC., 1960, 1638.lo R. E. Banks and G. E. Williamson, J. Chem. SOC., 1966, 816.l1 R. E. Banks, W. M. Cheng, and R. N. Haszeldine, J. Chem.l2 N. Muller, P. C. Lauterbauer, and C. F. Svatos, J. Amer.la J. E. Blackwood, C. L. Gladys, K. L. Loering, A. E. Petranca,l4 P. H. Ogden and R. A. Mitsch, J. Amer. Chem. Suc., 1967,SOC., 1963. 3407.Chem. SOC., 1967. 79, 1807.and J. E. Rush, J. Amer. Chem. Soc., 1968, 90, 509.89, 60071974 1733lying in the range expected for a trans HF system.15The 19F spectrum showed couplings for the CF, groupof 17.8 (coupling with the vinylic fluorine atom) and6.6 Hz (see above in the lH spectrum) due to geminalCF,-H coupling.This latter corresponds well to theof 6.3 Hz.(CF ) N p 33 2 ,c=c, value found l6 inProduct Yield (yo) *4-Methylp yridineH/ HWe thus assign 2 stereochemistry to compound (11).The third component isolated (111) showed verysimilar mass spectral, ix., and analytical data to com-pound (11) above, but showed differences in the 1Hand 191; n.m.r. spectra. Oxidation as above againafforded trifluoroacetic acid. The olefinic protonComposition of fluorination mixture from KCOI~F,and pyridine or 4-methylpyridineProduct Yield () *PyridineFCF2* C FH * C F3ck / (IY) N=C,(PICF3,N /F‘C=CH/CF3NF/ =C‘CF’/LFCSHResidue15.46.35.611.58.219.41.51.42.128.66.9“=C 9.8CH3FC’17.610.1CF2.CFI*CF3CH 5Residue 65.9* Based on isolated products.showed couplings of 6 and 3-25 Hz whilst in the 19Fspectrum the CF, group and olefinic fluorine atom gavecomplex peaks.However, on the basis of the lHspectrum it is clear that a geminal CF,-H coupling(6 Hz) is present, and the 3.25 Hz coupling is consistentwith a cis-H-F grouping.15 Thus compound (111) isassigned E stereochemistry.The fourth component (IV) showed an i.r. band at1770 cm-1, indicating the presence of a CF3N=CFgroup, confirmed by the 19F n.m.r. spectrum whichshowed the characteristic peak for the CF, group at58.3 p.p.m. with a 14 Hz coupling as discussed above.The mass spectrum and elemental analysis data sug-gested a structure CF,N=CFC,HF,.The 19F n.m.r.spectrum showed a peak at 213.2 p.p.m., correspondingto a -CFH group rather than a -CF,H group. A 5H-rather than a 4H-arrangement is preferred on the basisof coupling patterns * so the structure of (IV) is (2)-CF3N=CFCF2CHFCF3.The fifth and sixth components (V) and (VI) weredifficult to separate, but by careful preparative g.1.c.each was obtained pure. Compound (V) showed twoi.r. bands at 1730 and 1670 cm-1 assigned to CF,N=CF-and -CH=CH- respectively. Elemental analysis andmass spectral data suggested C,H,F,N as the empiricalformula indicating (V) to be a hexadiene. The lHn.m.r. spectrum showed a complex system attributable* The 1H and 1*F n.m.r.data are listed in a Supplementary16 J. W. E,msley, J. Feeney, and L. H. Sutcliffe, ‘High Resolu-16 J. Freear and A. E. Tipping, J. Chem. SOC. (C), 1968, 1096Publication : see the Experimental section.tion N.M.R., Pergamon, Oxford, 19661734 J.C.S. Yerkin Ito an ABMX, system li from which JAB could be de-termined as 16 Hz. This value suggests that thevinylic hydrogen atoms are in the E arrangementon the basis that J H x (trans) in olefinic compoundsusually falls in the range 13-18 Hz. The CF,N=CFgroup showed the typical 14 Hz coupling noted inall the previous compounds and is characteristic of the2 configuration. Thus (V) is assigned the structure(22,4E)-4H,5H-heptafluoro-2-azahexa-2,4-diene. Com-pound (VI) showed bands in its i.r.spectrum whichsuggested the presence of CF,N=CF- (1740) and -CF=CH(1690 crn-l) groups. Mass spectral and analyticaldata indicated that (VI) was C,HF,IC. The lH n.m.r.spectrum indicated that the product contained a singlevinylic proton coupled to a geminal CF, group (7 Hz)and to a trans-fluorine atom (26 Hz), and the lgF n.rn.r.spectrum confirmed this and indicated the character-istic coupling for the CF,N=CF- group; (VI) is thusassigned as (22,a.Z) -5H-octafl uoro-2-azahexa-2,4-diene.Compounds (VI I) and (VI I I) were very similar.Mass spectral and analytical data suggested an em-pirical formula C7F14N2; the lH n.m.r. spectrumconfirmed to absence of protons. The 19F n.m.r.spectrum indicated that each compound had the(2)-CF,N=CF group. The remaining signals suggestedthe presence of CF,, =CF, and (CFJ2K groups. Thus(VII) and (VIII) appeared to be isomers differing in theconfiguration about a double bond and to have thegross structure CF,N=CFCF=CCF,N (CF,),. Analysisof the coupling patterns found for the vinylic CF,and F groups, showed a doublet for the CF, group in(VII) (JFF 17 Hz) but a complex pattern for the CF,group in (VIII) whilst the vinylic F atom in (VII)gave a doublet of quartets JFF(d) = JFp(q) = 17 Hzbut a broad singlet in (VIII).On this basis (VII) isassigned the E configuration about the C=C bondwhilst (VIII) has the 2 arrangement.The final component isolated (IX) was shown byanalytical and mass spectral data to be C,H,FgN witha breakdown pattern very different from that of com-pounds (1)-(VIII) suggesting a different type ofstructure. The lH n.m.r.spectrum showed a signalattributable to a CF,H group (JHF 58 Hz) and anotherproton doubly split ( J H F 51 Hz). The 19F n.m.r.spectrum also showed the CF,H group but gave a quintetsplitting in addition to the large doublet expected forthe H-F coupling. Further, the spectrum revealedtwo AB type signals and a collapsed AB, each corre-sponding to the fluorine atoms. There was also a highfield signal due to a single fluorine atom (CFH group).This suggested that (IX) could be l-difluoromethyl-3H-heptafluoropyrrolidine, and this was subsequentlyconfirmed in an independent preparation by fluorin-at ion of N-met h ylp yrrole. l8The original fluorination mixture also containedl7 J.Burdon, personal communication.P. L. Coe, P. Smith, and J. C. Tatlow, unpublished work.lB P. L. Coe, A. G. Holton, and J . C. Tatlow, unpublishedwork.2o A. J. Edwards, R. G. Plevey, I. J . Sallomi, and J . C. Tatlow,1.C.S. Chem. Comm.. 1972. 1028.a high boiling fraction now shown l9 to contain severalpolyfluoropyridines. The compounds isolated from thisfluorination are of interest, as is the route by whichthey are formed. In an attempt to relate positionsin the ring-opened products to those in pyridine, wenext fluorinated 4-methylpyridine under essentiallythe same conditions. '4 complex mixture resulted,since CH,, CH,F, CF,H, and CF, groups can be formedfrom the methyl group. However, four major com-ponents, constituting 45-50 of the mixture wereisolated.By a combination of analytical and spectralmeasurements, applying the arguments used above(see Experimental section for details) these were as-signed structures (X)-(XIII) (see Table). Thus, the4-methyl group in the starting material ends up in theposition in all the products isolated.The reaction pathways which give rise to these pro-ducts are not yet understood. Three different speciesare formed, polyfluor~pyridines,~~ the open-chain com-pounds described herein, and the ring contractedAT-methylpyrrolidine derivative. Fluorination of pyri-dine and methylpyridines with caesium tetrafluoro-cobaltate(m) affords 2o polyfluoro-pyridines and -N-methylpyrrolidines, the latter being major products,but no open-chain compounds have been detectedso far.In the previous fluorination of aromatic compoundswe have postulated that in the initial stages of thereaction the transition metal fluoride, e.g.COF,, acts asan oxidising agent to produce radical cations by attackon the x ~ y s t e m , l ~ ~ ~ ~ ~ very much in the manner postulatedfor the formation of phenols from aqueous cobalticsalt oxidation of arenes. The radical cations are thenassumed to be attacked by fluorine atoms or fluorideions to lead either by loss of a proton or by furtheroxidation and loss of a proton to aromatic compounds,in this way by successive oxidations and reaction ofthe radical ions to explain the formation of the observedproducts.Application of this analysis to the fluorinationof pyridine suggests that 2,3,5,6-tetrafluoropyridineshould be a key intermediate in the fluorination. Thisisomer is found as a significant product in the higherboiling fractions of pyridine-KCOF, fluorination l9and it has subsequently been shown that on fluorinationit leads to the expected products.19Further support - for this idea comes from electro-chemical methoxylation of 2,6-dimethoxypyridine whichleads to 2,3,5,6-tetramethoxypyridine and 2,3,3,6,6-pentamet hoxyazacyclohexa-1 ,4-diene.22 This lattercompound corresponds to 1,1,4,4-tetrafluorocyclohexa-1,4-diene found in the fluorination of benzene withKC OF,.^Pyrolyses of perfluorinated heterocycles with N-Fbonds, e.g. perfluoropiperidine, have been re-e.g.__t C6H5F _t P-c6H4lT2. I t iS possible?* J . Burdon, I. W-. Parsons, and J. C . Tatlow, Tefvahadrolz,22 N. L. Weinberg and E. A. Brown, J . Org. Chem., 1966, 31,1972, 28, 43.40541974 1735ported,lO,ll*B and open-chain products and perfluoro-N-methylpyrrolidine were formed. -4lternative freeradical mechanisms were proposed for these processes.However, we have so far not detected any cyclic pro-ducts containing X-F bonds in our fluorination mixturesand since the reaction temperatures we have used aremuch lower than those used in the pyrolyses, suchmechanisms may well not be operating.The gross structures of products (I), (1V)-(VI), and(X)-(XIII) obtained from pyridine and 4-methyl-pyridine indicated the rupture of the 2,3 bond in thering to be important. It seems possible that thisoccurs following the formation of an X-C3 bond to giverise to the X-methylpyrrolidine (IX) obtained.Pro-ducts (VII) and (VIII) presumably arise by the in-corporation of (CFN (via (CF,),NH? into a C-N-C,unit (VI)?. Compounds (11) and (111) might arisefrom re-incorporation in a different way of a (CF,),Nunit into the C, unit left when it is formed, or couldcome from breakdown of the orginal heterocyclic ringin a different way.ESPERJMESTAL,4pparutus.-Fluorinatio1is were carried out in a con-ventional reactor, as previously described,, containingpotassium tetrafluorocobaltate(II1) (6.5 kg) . Preparativeg.1.c. utilised two columns: Unit A; dinonyl phthalate-Celite 1 : 2 (488 x 3-5 cm), and Unit B; dinonyl phthalate(920 x 1 cm), on a Pye series 104 instrument.The lHand l9F n.m.r. data of compounds (11)-(XIII) are listedin Supplementary Publication No. SUP 21025 (5 pp.).*Fluorination of Pyridine.-In a typical run, pyridine(100 g) was added t o the reactor at 210-230' in a streamof nitrogen (10 1 h-l) over 3 h. After the addition, nitrogenwas passed for a further 2 h. The effluent gases werepassed through a sodium fluoride pellet trap at 85-90'and then collected in a glass trap cooled in liquid air t ogive products (145 g). After a short time crystals ap-peared in the fluorination mixture. Sublimation in vacuoafforded 4,4,4-trijhoro-N-tri~uoromethyZcrotonamide, m.p.122-123" (Found: C, 29.0; H, 1.5; F, 55.6; X, 6.8.C,H,F,NO requires C, 29.0; H, 1.4; F, 55.1; N, 6-804,),7 -0.1 (lH, s, CF,NH) and 3-12 (2H, complex, -CH=CH-),l9F n.m.r.57.9 (d, J H F 3 Hz, CF,-NH) and 66.2 p.p.m.(rel. t o CC1,F) (d, J H ~ 5.5 Hz, CF,-CH=).Fractional Distillation.-The products (576 g) from fourfluorinations were filtered through layers of sodium fluorideand magnesium sulphate and then carefully distilledthrough a vacuum jacketed column (122 x 2.5 cm) packedwith Dixon gauze rings to give the fractions 1-6 describedbelow; at ca. 70" degradation occurred and fractions 7(97 g) and 8 (49-9 g) were obtained by distillation in vacuo;a residue (196 g ) remained.Isolation of Products.-Fraction 1 (b.p. 20°. Analyticalg.1.c. indicated a complex mixture of products containingfour major components. Fractionation as before of204 g of the mixture gave three fractions, 1, b.p. <65",66-8 g; 2, b.p. 65-45', 68.8 g ; and 3, b.p. 85-95',31.1 g; pot residue 30.3 g. A portion of fraction 1 wasseparated into its major components in a qualitativemanner t o give (i) (2) -5-trifEzcoromethyZdecu~~oro-2-azahex-2-ene (X), b.p. 62.5' (Found: C, 21.4; F, 74~6. C,F,,Nrequires C, 21.6; F, 74.2), vmax. 1770 cm-l (-CFN-),m/e 333 (MT), 314 (C,Fl,N+t), 226 (C,F,N+), 181 (C4F,+),145 (C,F,N+), and 114 (C,F4Nf), and (ii) (Z)-l$-trif2iroro-rnethylocta~uor0-2-azuhexa-2~4-diene (XI), b.p. 65" (Found :C, 24.2; F, 70.4. C,FllN requires C, 24-4; F, 70.9),vuX. 1700 (-CFC) and 1770 cm-l (CWN-), nz/e 295 (M+),276 (C,Fl,Nf), 188 (C,F,Nf), 181 (C4F,+), 150 (C,F,+), and114 (C2F4Nf). Similarly a portion of fraction 2 gave(i) compound (XI) ; (ii) (2)-5-methyldecuflzoro-2-uzuhex-2-ene ( X I ) , b.p. 76.5' (Found: C, 25-9; H, 0.8; F , 68.5;N, 5.3. C,H,F,,N requires C, 25.8; H, 1.1; F, 68.1;N, 5.6), v,, 1770 cm-l (-CFN-), m/e 260 (M - 19),165 (C4H3F,+), 145 (C,H,F,+), 115 (C,H,F,+), and 114(C,F4Nf) ; and (iii) (Z)-~-di=fluoromethyl~ecu~uoro-2-uzu~ex-2-ene (XIII), b.p. 79.5' (Found: C, 22.8; H, 6.9; F,72.7; N, 4.0. C,H,Fl,N requires C, 22.8; H, 0.3; F,72.4; N, 4.5), vmx 1775 cm-l (-CF="), m/e 296 (M -19), 246 (C,HF,N*), 164 (C,F,N+), and 114 (C,F4Nf).4/082 Received, 17th January, 1974
机译:1732 J.C.S. Perkin IFluoriations with Potassium Tetrafluorocobaltate( 111).Part V1.l Fluori-nation of Pyridine and 4-Methylpyridine作者:Paul L. Coe,' J. Colin Tatlow, andBox 363, Birmingham B15 2TTMichael Wyatt, Chemistry Department, University of Birmingham, P.O.吡啶已在 KCo“F 上加氟,以得到大部分开环产物的混合物。分离出的主要成分有(Z)-十一氟-2-二十碳-2-烯(I),(Z)-2H-1-双三氟甲基氨基四氟丙-1-烯(11),(E)-2H-1-双三氟甲基氨基四氟丙烯(111),(Z)-5H-十氟-2-氮杂-2-烯(IV),(2Z,4€) -4H,5H-七氟-2-氮杂-2,4-二烯 (V), (22.42) - 5H-八氟-2-氮杂-2.4-二烯 (VI),(2Z,4€)-5-双三氟甲基氨基-八氟-2-氮杂-2,4-二烯 (VII), (2Z,4Z)-5-双三氟甲氨基-八氟-2-氮杂-2.4-二烯VIII)和3H-1-二氟甲基七氟吡咯烷(IX)。以类似的方式,4-甲基吡啶的氟化得到类似化合物(Z)-5-三氟甲基脱氟-2-氮杂-己-2-烯(X)。(Z)-5-三氟甲基八氟-2-氮杂-2,4-二烯(XI),(Z)-5-甲基十氟-2-氮杂-2-烯(XII)。和(Z)-5-二氟甲基十氟-2-氮杂-2-烯(XIII)为主要组分。在本系列的前几篇论文中,我们用KComF描述了苯、2萘、酮和酯和酸氟化物的氟化反应,结果与使用COF获得的结果有很大不同。现在,我们已将对前一种试剂的研究扩展到吡啶和4-甲基吡啶的氟化反应。虽然吡啶及其衍生物已成功通过电化学方法氟化得到多氟哌啶,并且通过交换工艺制备了多种多氟吡啶,但利用过渡金属氟化物对吡啶进行氟化试验的尝试效果不佳。吡啶和COF,在360“处得到8全氟哌啶作为唯一可分离的产物,收率为0.2%,2,6-二甲基吡啶得到相应的pexfluoropiperidine的5%收率。在相关工作中,lo 2-氟吡啶与元素氟产生了分解产物和少量全氟哌啶的复杂混合物。我们发现,在210-230“处,在新试剂KCoF上对吡啶进行氟化处理,得到含有九种主要成分的产物的复合混合物。混合物的分离很困难,因为在室温下静置很短的时间也会发生一些分解和晶体的沉积,而且正常的分馏也会引起广泛的分解。最后将混合物分馏成切块,每个切块都含有很大比例的一种主要成分,方法是在油浴上使用快速起飞和仔细加热,以将烧瓶温度保持在最低水平。g.1.c可以进行进一步的纯化。九个主要成分都是等离子的(见表)。通过元素分析和光谱学鉴定,在分解位置形成的晶体为4,4,4-t核氟-N-t核氟酸盐h y lcr o t on-1 Part V, J.Burdon, J. R. Knights, I. W. Parsons, and J. C.2 P. L. Coe, R. G. Plevey, and J. C. Tatlow, J. Chem. SOC. (C),3 P. L. Coe, R. M. Habib, 和 J. C. Tatlow,正在准备中.4 R. D. Bagnall、P. L. Coe 和 J. C.Tatlow, J.C.S. Perkin I,6 R. D. Bagnall, P. L. Coe, and J. C. Tatlow, 提交6 J. H. Simons, J. Electrochem.SOC., 1949, 95, 47.7 R. D. Chambers, J. Hutchinson, and W. K. R. Musgrave,Tatlow, J. Fluorine Chem., in the press.1969, 1060.1972,2277.publication in J .氟化学学报 .Chem. SOC., 1964, 3673.amide,推测由化合物(V)的水解产生(见下文)。通过比较其 i.r. 和 n.m.r. 光谱,显示最低沸点成分是已知的十一氟-2-氮杂-2-烯 (I),其亚氨基-三氟甲基的化学位移值与 Haszeldine l1 给出的值一致,而不是 Muller.12根据 19F n.m.r. 光谱,我们将 CF,N=CF 双键的立体化学指定为 2.13对于含有 CF 的化合物,Ogden 和 Mitsch14 的推理,N=CF组。通过与氟烯烃类比,其中CF组显示出57.3-57-7 p.p.m.范围内的信号(相对于CCGF的位移),双峰分裂为13.3-14.3 Hz,他们归因于顺式(2)立体化学,其中峰值出现在54-2-56.8 p.p.m.,与ca的耦合。假设 6 Hz,反式 (E) 立体化学。在化合物(I)中,共振发生在57.3 p.p.m.,耦合频率为14 Hz,表明该化合物具有2立体化学。对于从该氟化中分离的所有亚胺,重复了这种模式。分离出的第二份分量(11)的i.r.谱表明,由于约1770 cm-l14处的条带不存在,因此不存在CF,N=CF组,但1725 cm-l处的aband表明存在CHKF组。(11)与高锰酸钾在丙酮中的氧化得到的三氟乙酸,鉴定为S-苄基异硫脲盐,表明存在乙烯基CF基团。质谱图在 mle246 处给出峰值,碎裂模式与结构 (CF,),NCF=CHCF, (11) 一致。这得到了元素分析以及 lH 和 laF n.m.r. 光谱分析的支持。双键的立体化学由n.m.r.光谱表示。烯烃质子显示两个偶联,21.8 和 6-5 Hz,值 21.8* R. N. Haszeldine, J. Chem. SOC., 1960, 1966.@ R. N. Haszeldine, J. Chem. SOC., 1960, 1638.lo R. E. Banks and G. E. Williamson, J. Chem. SOC., 1966, 816.l1 R. E. Banks, W. M. Cheng, and R. N. Haszeldine, J. Chem.l2 N. Muller, P. C. Lauterbauer 和 C. F. Svatos, J. Amer.la J. E. Blackwood, C. L. Gladys, K. L. Loering, A. E. Petranca,l4 P. H. Ogden 和 R. A. Mitsch, J. Amer. Chem. Suc., 1967,SOC., 1963.3407.化学SOC.,1967。79, 1807.和 J. E. Rush, J. Amer. Chem. Soc., 1968, 90, 509.89,60071974 1733位于反式HF系统的预期范围内.1519F光谱显示CF组的耦合,组为17.8(与乙烯基氟原子耦合)和6.6 Hz(见上文lH光谱)由于双子CF,-H耦合。后者很好地对应于 6.3 Hz.(CF ) N p 33 2 ,c=c, 值 l6 在产物产率 (yo) *4-甲基邻苯基啶 H/ HWe 因此将 2 立体化学分配给化合物 (11)。分离出的第三组分(111)显示出与上述com-pound(11)非常相似的质谱ix.和分析数据,但在1Hand 191中显示出差异;N.M.R. 光谱。氧化如上所述,再次得到三氟乙酸。烯烃质子由KCOI~F与吡啶或4-甲基吡啶组成的氟化混合物产率(%) *吡啶FCF2* C FH * C F3ck / (IY) N=C,(PICF3,N /F'C=CH/CF3NF/ =C'CF'/LFCSHResidue15.46.35.611.58.219.41.51.42.128.66.9“=C 9.8CH3FC'17.610.1CF2.CFI*CF3CH 5残基 65.9* 基于分离产物,显示 6 和 3-25 Hz 的耦合,而在 19F 光谱中,CF、基团和烯烃氟原子给出络合峰。然而,根据lH谱,很明显存在双层CF,-H耦合(6 Hz),并且3.25 Hz耦合与顺式-H-F分组一致.15因此化合物(111)被分配为E立体化学。第四个分量(IV)在1770 cm-1处显示一个i.r.带,表明存在CF3N=CF基团,由19F n.m.r证实。如上所述,CF的特征峰值为58.3 p.p.m.,耦合频率为14 Hz。质谱和元素分析数据表明,结构为CF,N=CFC,HF,.19F n.m.r.谱在213.2 p.p.m.处出现峰值,对应于-CFH组而不是-CF,H组。根据耦合模式*,5H排列比4H排列更优选,因此(IV)的结构为(2)-CF3N=CFCF2CHFCF3。第五和第六组分(V)和(VI)很难分离,但通过仔细的制备g.1.c.,每个组分都得到了纯净的。化合物(V)显示twoi.r。1730 和 1670 cm-1 处的条带分别分配给 CF,N=CF- 和 -CH=CH-。元素分析和质谱数据表明,C,H,F,N作为经验式,表明(V)为己二烯。lHn.m.r.光谱显示一个可归因的复杂系统* 1H 和 1*F n.m.r.数据列在补充 16 J. W. E,msley, J. Feeney, and L. H. Sutcliffe, 'High Resolu-16 J. Freear and A. E. Tipping, J. Chem. SOC. (C), 1968, 1096Publication : see the Experimental section.tion N.M.R., Pergamon, Oxford, 19661734 J.C.S. Yerkin Ito an ABMX, 系统li,JAB可以终止为16 Hz。该值表明乙烯基氢原子处于 E 排列,因为烯烃化合物中的 J H x(反式)通常落在 13-18 Hz 范围内。CF,N=CF组显示出典型的14 Hz耦合,在以前的所有化合物中都注意到,并且是2构型的特征。因此,(V)被分配结构(22,4E)-4H,5H-七氟-2-氮杂-2,4-二烯。Com-pound(VI)在其i.r.谱中显示出条带,表明存在CF,N=CF-(1740)和-CF=CH(1690 crn-l)基团。质谱和分析数据表明(VI)为C,HF,IC。lH n.m.r.谱表明,产物含有与双氟基团(7 Hz)和反氟原子(26 Hz)偶联的单乙烯基质子,lgF n.rn.r.谱证实了这一点,并表明了CF,N=CF-基团的特征偶联;因此,(VI)被指定为(22,a.Z)-5H-辛氟-2-氮杂-2,4-二烯。化合物(VI I)和(VI I I)非常相似。质谱和分析数据表明,C7F14N2有一个经验公式;lH n.m.r.光谱证实没有质子。19F n.m.r.谱图表明,每种化合物具有(2)-CF,N=CF基团。其余信号提示存在 CF、、=CF 和 (CFJ2K 组。因此,(VII)和(VIII)似乎是异构体,在双键的构型上有所不同,并且具有总结构CF,N=CFCF=CCF,N(CF,),。对乙烯基CF和F基团的耦合模式的分析显示,CF基团(VII)(JFF 17 Hz)为双峰,但CF基团(VIII)为复数,而(VII)中的乙烯基F原子为四重奏[JFF(d) = JFp(q) = 17 Hz],但(VIII)为宽单重态。在此基础上,(VII)分配了关于C=C键的E配置,而(VIII)具有2排列。通过分析和质谱数据显示,分离出的最终组分(IX)为C,H,FgN,其击穿模式与com-pounds(1)-(VIII)的击穿模式非常不同,表明存在不同类型的结构。lH n.m.r.谱显示出一个CF,H基团(JHF 58 Hz)和另一个质子双分裂(J H F 51 Hz)的信号。19F n.m.r.谱也显示了CF,H组,但除了H-F耦合预期的大双峰外,还给出了五重奏分裂。此外,光谱揭示了两个AB型信号和一个坍缩的AB信号,每个信号都与氟原子相对应。由于单个氟原子(CFH组),还存在高场信号。这表明(IX)可能是l-二氟甲基-3H-七氟吡咯烷,随后在N-met h ylp yrrole的氟at离子的独立制备中得到证实。l8原始氟化混合物还包含l7 J.Burdon,个人通信.P. L. Coe, P. Smith, and J. C. Tatlow, 未发表 work.lB P. L. Coe, A. G. Holton, and J .C. Tatlow, 未发表的作品.2o A. J. Edwards, R. G. Plevey, I. J .Sallomi 和 J .C. Tatlow,1.C.S. 化学通讯1972. 1028.a 高沸点馏分现在显示 l9 含有几种多氟吡啶。从这种氟化中分离出的化合物是有趣的,它们的形成途径也是如此。为了将开环产物中的位置与吡啶中的位置联系起来,我们接下来在基本相同的条件下对4-甲基吡啶进行氟化处理。'4 络合物混合物产生,由于 CH、CH、F、CF、H 和 CF 可由甲基形成基团。然而,分离出占混合物45-50%的四种主要成分。通过分析和光谱测量的结合,应用上面使用的参数(详见实验部分),这些是有符号结构(X)-(XIII)(见表)。因此,起始原料中的4-甲基最终在所有产物中处于&位置。产生这些产物的反应途径尚不清楚。形成三种不同的种类,多氟~吡啶,~~本文所述的开链com-pounds,以及环收缩AT-甲基吡咯烷衍生物。吡啶和甲基吡啶与四氟钴酸铯(m)的氟化反应得到2o多氟吡啶和-N-甲基吡咯烷,后者是主要产物,但迄今尚未检测到开链化合物。在前面的芳香族化合物的氟化反应中,我们假设在芳香族化合物的初始阶段,过渡金属氟化物,例如COF,作为一种氧化剂,通过攻击x~ys t e m,l~~~~~~非常像假设从芳烃的钴盐水溶液氧化形成酚的方式产生自由基阳离子。然后假设自由基阳离子受到氟原子或氟化物的攻击,导致质子损失或质子进一步氧化和损失为芳香族化合物,以这种方式通过自由基离子的连续氧化和反应来解释观察到的产物的形成。该分析应用于吡啶的氟化反应表明,2,3,5,6-四氟吡啶应该是氟化的关键中间体。这种异构体被发现是吡啶-KCOF的高沸点馏分中的重要产物,氟化l9随后表明,在氟化上它会导致预期的产物.19进一步的支持 - 这个想法来自2,6-二甲氧基吡啶的电化学甲氧基化,导致2,3,5,6-四甲氧基吡啶和2,3,3,6,6-五甲基氧杂环己-1,4-二烯.22这种后一种化合物对应于在氟化中发现的1,1,4,4-四氟环己-1,4-二烯苯与KC OF,.^用N-F键的全氟杂环的热解,例如全氟哌啶,已被重新e.g.__t C6H5F_t P-c6H4lT2。I t iS 可能吗?* J .伯登,I.W-。帕森斯和 JC .Tatlow, Tefvahadrolz,22 N. L. Weinberg 和 E. A. Brown, J .Org. Chem., 1966, 31,1972, 28, 43.40541974 1735ported,lO,ll*B和开链产物和全氟-N-甲基吡咯烷形成。针对这些过程提出了-4l天然自由基机制。然而,到目前为止,我们还没有在我们的氟化混合物中检测到任何含有X-F键的环状导管,而且由于我们使用的反应温度远低于热解中使用的温度,因此这种机制很可能不起作用。由吡啶和4-甲基吡啶得到的产物(I)、(1V)-(VI)和(X)-(XIII)的粗结构表明,2,3键在吡啶中的断裂很重要。这似乎有可能发生在 X-C3 键形成以产生获得的 X-甲基吡咯烷 (IX) 之后。产物(VII)和(VIII)可能是由(CF&N(通过(CF,),NH?]合并到C-N-C,单元[(VI)?]中而产生的。化合物(11)和(111)可能来自以不同的方式将a(CF,),Nunit重新掺入C中,形成时留下的单元,或者可能来自原始杂环以不同的方式分解。如前所述,ESPERJMESTAL,4pparutus.-Fluorinatio1is在含有四氟钴酸钾(II1)(6.5 kg)的合成反应器中进行。Preparativeg.1.c.使用了两列:单元A;邻苯二甲酸二壬酯-硅酸酯 1 : 2 (488 x 3-5 cm) 和 B 单元;邻苯二甲酸二壬酯(920 x 1 cm),在 Pye 系列 104 仪器上。化合物(11)-(XIII)的lHand l9F n.m.r.数据列在补充出版物No.SUP 21025(5 页)。*吡啶的氟化-在典型的运行中,吡啶(100 g)在210-230'的氮流(10 1 h-l)中加入反应器3小时。加入后,氮气再通过2 h。流出气体通过85-90'的氟化钠颗粒捕集器,然后收集在液态空气中冷却的玻璃捕集器中(145 g)。短时间后,晶体在氟化混合物中形成。在真空中升华 4,4,4-trijhoro-N-tri~uoromethyZcrotonamide, m.p.122-123“ (Found: C, 29.0;H, 1.5;F, 55.6;X, 6.8.C,H,F,NO 需要 C, 29.0;H, 1.4;F,55.1;N, 6-804,),7 -0.1 (lH, s, CF,NH) 和 3-12 (2H, 复合体, -CH=CH-),l9F n.m.r.57.9 (d, J H F 3 Hz, CF,-NH) 和 66.2 p.p.m.(rel. t o CC1,F) (d, J H ~ 5.5 Hz, CF,-CH=).分馏-将来自四氟化物的产物(576克)过滤过氟化钠和硫酸镁层,然后通过真空夹套柱(122×2.5厘米)小心蒸馏,该塔填充有Dixon纱布环,得到下面描述的馏分1-6;在约70“时发生降解,真空蒸馏得到馏分7(97 g)和8(49-9 g);残留物(196克)。产物分离-馏分 1 (b.p. 20°。Analyticalg.1.c.表示含有四种主要成分的复杂产品混合物。如前所述,将204 g混合物分馏得到三个馏分,1,b.p.<65“,66-8 g;2, b.p. 65-45', 68.8 克 ;和 3, b.p. 85-95',31.1 g;锅渣30.3克。将馏分 1 的一部分定性分离成其主要组分 t o 给出 (i) (2) -5-trifEzcoromethyZdecu~~oro-2-azahex-2-ene (X), b.p. 62.5' (Found: C, 21.4;F,74~6。C,F,,N需要C,21.6;F,74.2%),最大值。1770 cm-l (-CFN-),m/e 333 (MT)、314 (C,Fl,N+t)、226 (C,F,N+)、181 (C4F,+)、145 (C,F,N+) 和 114 (C,F4Nf),和 (ii) (Z)-l$-trif2iroro-rnethylocta~uor0-2-azuhexa-2~4-diene (XI), b.p. 65“ (发现:C, 24.2;F,70.4。C,FllN需要C,24-4;F,70.9%),vuX.1700 (-CFC) 和 1770 cm-l (CWN-)、nz/e 295 (M+)、276 (C、Fl、Nf)、188 (C,F,Nf)、181 (C4F,+)、150 (C,F,+) 和 114 (C2F4Nf)。类似地,部分 2 得到 (i) 化合物 (XI) ;(ii) (2)-5-甲基癸唑-2-桔-2-桔梗-2-烯 ( X I ) , b.p. 76.5' (Found: C, 25-9;H, 0.8;F , 68.5;N,5.3。C,H,F,,N 需要 C, 25.8;H,1.1;F, 68.1;N, 5.6%), v,, 1770 cm-l (-CFN-), m/e 260 (M - 19),165 (C4H3F,+), 145 (C,H,F,+), 115 (C,H,F,+), 和 114(C,F4Nf) ;(iii) (Z)-~-di=氟甲基~ecu~uoro-2-uzu~ex-2-烯 (XIII), b.p. 79.5' (Found: C, 22.8;H,6.9;F,72.7;N,4.0。C,H,Fl,N需要C,22.8;H, 0.3;F,72.4;N, 4.5%), vmx 1775 cm-l (-CF=“), m/e 296 (M -19), 246 (C,HF,N*), 164 (C,F,N+) 和 114 (C,F4Nf)。[4/082 收稿日期:1974年1月17日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号