...
首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Chiroptical studies. Part LXXXVII. Circular dichroism of some sparteine alkaloids
【24h】

Chiroptical studies. Part LXXXVII. Circular dichroism of some sparteine alkaloids

机译:手性光学研究。第三十七部分。一些sparteine生物碱的圆二色性

获取原文

摘要

1974 2565Chiroptical Studies. Part LXXXVII.l Circular Dichroism of SomeSparteine AlkaloidsBy William Klyne," P. Molly Scopes, and R. Nigel Thomas, Westfield College, Hampstead, London NW3 7STJerzy Skolik, Jacek Gawrosriki, and Maciej Wiewiorowski, A. Mickiewicza University, Poznari, PolandC.d. data have been recorded for seventeen compounds of the sparteine series related to 11 P-sparteine (a-iso-sparteine) and 1 1 a-sparteine. The chromophores involved are the tertiary amine and NN-dialkyl-lactarn systems ;the compounds studied include eight amines, eight amino-lactams, and one dilactam.THE sparteine alkaloids are of considerable interest forchiroptical studies because they contain chromophoresof two different types (NN-dialkyl-lactam and tertiaryamine) in a rather rigid system of four fused six-membered rings (1).The skeleton may be consideredl Preceding papcr in the Westfield series, hitherto entitled' Optical Rotatory Dispersion and Circular Dichroism,' PartLXXXVI, L. Bartlett, D. N. Kirk, and P. M. Scopes, J.C.S.P e r k k I , 1974, 2219.as two quinolizidine systems fused together, or as adiazabicyclo3.3. llnonane which has been extended byone six-membered ring at each end (for general referencessee ref. 2). The chiroptical properties of the amide' The Alkaloids,' ed. R. H. I?. Manske, Academic Press, NewYork and London: N. J. Leonard in vol. 3, 1963, p. 119, and vol.6, 1960, p. 253; F. Bohlmann and D. Schumann in yol. 9, 1967,p. 191; R. K. Hill in ' Chemistry of the Alkaloids, ed.S. W.Pelletier, Van Nostrand, New York, 1070, pp. 418-4222566 J.C.S. Perkin Ichromophore have been much studied, though not inthe substitution pattern found here ; few chiroptjlcalstudies on tertiary amines are available. Some 0.r.d.measurements on sparteine derivatives have beenrep~rted.~Conjiguration and Nomendatwe.-The absolute con-figurations of compounds in the group are known fromstudies by Okuda.* Most of the known naturallyoccurring compounds have the configurations at C-6,C-7, and C-9 shown in formula (2); in particular, theyhave the 6p(H)-configuration (in terms of steroid con-ventions). The configuration at C-11 is variable, andwe suggest that for semisystematic nomenclature thestem-name ' sparteine ' should imply the configurationsat C-6, C-7, and C-9 shown in (2), i.e.(6R,7S,9S), andthat the configuration of the hydrogen atom (or anygroup replacing hydrogen) at C-11 should be stated asa or p, following the pattern employed for ~ter0id.s.~Thus compound (3), hitherto known simply as 'spar-teine,' becomes 11 a-sparteine ; ' cc '4sosparteine (2)becomes 11 P-sparteine.Conformation and Symmetry.-1 1 p-Spaxteine (2) is arigid molecule with an all-chair conformation in allcircumstances (2A) ; its skeleton shows C, symmetry,and may be represented as part of a diamond network.The llcc-sparteine system (3) can exist either in an' all-chair ' conformation (3A) or in a conformation inwhich ring c is a boat, and the remaining three ringsare chairs (3B). Extensive studies on the conform-ations of the sparteine alkaloids by i.r.and n.m.~.~*'spectroscopy have been carried out.The conformation of any particular 11 a-compounddepends on the nature and position of ring substituents,on the state (crystalline or in solution), and on thecharacter of the solvent. For many lla-compoundsn.m.r. and i.r. measurements indicate the all-chairconformation in polar solvents, but the ' c-boat ' con-formation in non-polar solvents ; in certain cases,however, the ' c-boat ' conformation may occur also inS. Iskanderov and S. Yu. Yunusov, Khim. prirod. Soedinenii,1970,8,494 (Chem. Nut. Compounds, 1970,6,519) ; S. Iskanderov,R. A. Shaimardanov. and S. Yu. Yunusov, ibid., 1971, 7, 636(Chem. Nut. Compounds, 1971, 7, 615).4 S.Okuda, K. Tsuda, andH. Kataoka. Chem. a7d Ind., 1961,1116, 1751; cf. W. Klyne and J. Buckingham, An Atlas ofStereochemistry,' Chapman and Hall, London 1974, p. K21.1.U.P.A.C.-I.U.B. Rules of Steroid Nomenclature, PureAppl. Chem., 1972, 31, 286.(a) P. Baranowski, P. Skolik, and M. Wiewiorowski, Tetra-hedron, 1964,20, 2383; (b) M. Wiewiorowski, 0. E. Edwards, andM. D. Bratek-Wiewiorowska, Canad. J . Chem., 1967, 45, 1447;(c) J. Skolik, P. J. Krueger, and M. Wiewiorowski, Tetrahedmn,1968, 24, 6439; ( d ) J. Skolik, M. Wiewiorowski, and K. Jedrze-jczak. Bull. Acad. polon. Sci. Sir. chim., 1969, 17, 201; (e) J .Skolik, M. Wiewiorowski, and P. J. Krueger, J . Mot. Strztcture,1970, 5, 461.polar solvents as a result of intramolecular hydrogenbonding (cf.p. 2567).It had been hoped that c.d. measurements in arangeof solvents would provide further evidence regardingconformations; the c.d. results, however, show no clearcorrelation with the i.r. studies. In the present state ofknowledge of the c.d. behaviour of arnides and oftertiary amines, our c.d. results are therefore presentedon their own in an empirical fashion.The Bis-(tertiary amines) .-These compounds include11 a-sparteine, 11 P-sparteine, and their hydroxy-deriva-tives, in which the only chromophores are the tertiarynitrogen atoms at the bridgeheads of the quinolizidinesystems. Earlier data on the U.V. absorption of tertiaryY( 2 1 ( 2A 1 all-chair,'Ilp-H( 3A 1 all-chair, llcc-Hamines are summarised(38 ) chair, chair,Absorption C.d. Absorption C.d.Compound1 l(3-Sparteine(' a '-Isosparteine)1 la-Sparteine(Spar teine)4a(eq) -Hydroxy- 1 la-sparteine12P(ax)-Hydroxy-l la-sparteine13a(eq) -H ydroxy- 1 1 a-sparteine13p(~x) -Hydroxy-1 la-sparteineLupinineEpilupinineE368081807300520081007300710046004300A/nm240210205198198201201198205A t + 2-79- 8.89+1! - 0-39 + 3.12$2.11-0.17 + 0.78+0-12 - 0.40 + 1-98-2.8!- 0.36 + 3.98- 0.54+3*61 + 0.29- 1-2 I + 0.05- 0.35 + 0*4!A/nm245217194236202-208189238220234213198186237208237208209195225204185 A/nm A t1880 225 + 1.224800! 202 - 3.55- 0.063600 199 + 0.59 + 1.6!3500 206 + 0.46- 1.063850 203 + 1.683300 203 + 1-98+0*11A/nm230206242208195200202197201211* None of the compounds listed in this Table showed any c.d.in acidic methanol. t All A values are maxima except thosemarked ! (lowest wavelength measured).six of their hydroxy-derivatives. We find for 11 p-sparteine an absorption maximum in hexane a t 210 nm( E ca. 8180) with a shoulder at 240 nm (e 3680); othermembers of the series with and without hydroxy-groups show similar absorption bands at about 200-205 nm, but in most cases the shoulder at 240 nm cannotbe detected. Lupinine and epilupinine (a), which areuseful models for one-half of the sparteine skeleton,show absorption at about 200 nm with E ca.4000.l2 R. G. Kostyanovsky, I. M. Gella, V. I. Markov, and 2. E.Samojlova, Tetvahedron, 1974, 30, 39.l3 E. Tannenbaum, E. M. Coffin, and H. Harrison, J . Chem.Phys., 1953,21, 311; L. W. Pickett, M. E. Corning, G. M. Wieder,D. A. Semenow, and J. M. Buckley, J . Amer. Chem. Soc., 1953, '45,1618.l4 J. C. Craig and S. K. Roy, Tetrahedron, 19ti5, 21, 401; J. C.Craig, ' Some Newer Physical Methods in Structural Chemistry,'ed. R. Bonnett, London, 1967, p. 170; H. C. Beyerman, L. Maat,J. P. Visser, J. C. Craig, and R. P. K. Chan, Rec. Trav. chim., 1969,88, 1012; G. Fodor, E. Bauerschmidt, and J. C. Craig, Canad. J .Chem., 1969, 47, 4393; H. C. Beyerman, S. van den Bosch, andJ. H. Brenker, Rec.Trav. chim., 1971, 90, 755; H. C. Beyerman,B. S. L. Bordes, L. Maat, and F. M. Varnaar, ibid., 1972, 91,1441.bands disappeared, as expected, on acidification of amethanolic solution. 11 p-Sparteine is considered firstbecause of its inherent C, symmetry; it shows in liexanea moderate positive c.d. band at 245 nm, and two strongbands at 217 and r h E A/nm AE A/nm E A/nm A5 i A/nin17,80017,2507 7006OOsh2200530sh570018,00010,600770sh13,400215209207250208265211206210241209+ 5.30- 4-37- 4.68 -+ 4.32- 9.28 + 6-95 + 0.80sh + 1.16+ 1.05~h- 2.67-/- 3.03- 7.20 + 3.31- 7-34 + 8.44 + 0.53- 1.05 - 1-42 -+ 4.25- 7-98+5*0! + 0.88- 10.2+11*7!- 3.32 + 2.37sh+ 3-82+ 7.90+5-7!- 7.14-5.10236215193235208190245235208254235208241210190233209298a24321119424422018523321520723621820519316,20018,0006100GO0085008OOsh21001200sh620018,70011,9007400210205'1 1211205255211260209205206211+ (3.96 - G.96+ 5.83- 6.17$- 4.80- 4.45-b 5.49- 7.45- 0.21 + 1.48- 2.094- 0.62- 0.56- 1.47-f- 1.33- 1-95+3.3!- 6-95 + 6.04- 5.24+5.4!+ 2.46+ 2.7 !- 1.43d3 999198224200223200224197259 C225207225206293 d246212195220202226206223210197-0.26 264+3-64 333 -0.04 26212,900 207 -10.2 216 13,200 209 +7.92 220+22-8 204 +7-7! 206Salt in methanol aC.d.:I bsorptionE Alnm AE t A/nm+8.35 22712,500 207 -17.0 202+6*52 22415,400 205 -9.26 200+5*55 222--8*9! 197+6*28 224-8.63 197-2.53 257*+1-89 220-23.0 203-2.18 254*-21.0 201+590 255-7*2! 20016,900 207 -12.4 203+4*83 227-1.22 255+3*4! 206-0.82 228+4*08 205-0.05 264f8-13 219+7.68 2067 All 4~ values are maxima except those marked sh (shoulder) or ! (lowest wavelength measured).a Salts were formed by adding an excess of HCl to the methanolic solution of the base, except in two cases marked * where thecrystalline perchlorate was used.13a-Hydroxy- 15~-(5-hydroxymethyl-2-furyl)-2-oxo-l la-sparteine was also examined inmethanol AE + 7.94 (228 nm), -3.97 (201 nm), -6.2! (195 nm) and in acidic methanol AE + 10.8 (225 nm), -8.6 (201 nm);the compound was insoluble in hexane.Measurcd on base liberated from the perchlorate. Ketonic n + x* band.even in hydroxylic solvents. Lupinine (4; P-CH,OH)and epilupinine (4; a-CH20H) show c.d. bands whichseries at all four possible positions (2, 10, 15, and 17),but in the more symmetrical 11P-sparteine series onlythe 2-oxo-compound is available. Various hydroxy-2-oxo-1 la-sparteines have been studied, and also 2,13-dioxo-1 la-sparteine, in which the 13-oxo-group is ofnormal ketonic character.There is no reason to suppose that the c.d. behaviourof the substituted amide group would be significantlyaltered in acidic methanol; the c.d. bands of amines atabout 200 nm are obliterated by acid,13 and the observedc.d. of the monolactam monoamino-compounds in acidis presumably essentially that of the lactam chromo-phore alone (perturbed by quaternary nitrogen).deO" m,30( 4 ) ( 5 1are much less intense than those given by the bis-(tertiary amine) skeleton in 11 cc- and 11 P-sparteine.Lactatla-Tertiary Amines (Oxosparteitzes) .-Several im1974Literature data on the U.V. absorption of lactams aresparse.ls~~~ We found for three of the lactams studiedU.V.maxima at 205-207 nm (cmx. 12,000--17,000) inacidic methanol, and rather more intense maxima atsimilar wavelengths in (neutral) methanol and inhexane.No extensive collection of c.d. data for lactams isavailable; some recent papers, in which references toearlier work may be found are given as refs. 20-25(as well as 18 and 19); very few of the compoundsconsidered in these references are NN-dialkyl-lactamsof the kind found in the sparteine series.C.d. studieson acetamido-derivatives of chiral amines, whichappear to show a surprising measure of conformationalrigidity, are also noted.2-0xo-conzpo.unds. We consider first the 2-oxo-l l a-and l l p-sparteines (5) carrying no other substituents;each compound gives, down to about 200 nm, the samec.d. pattern in hexane, in methanol, and in acidicmethanol; viz. a strong positive band at about 225-230 nm and a strong negative band at about 200-215nm. A further band at about 190 nm is negative forthe llp- and positive for the lla-compound. It wouldbe tempting to consider the first two bands as a coupletdue to interaction between two chromophores thetransitions of which are of approximately the sameenergy.However, such a hypothesis is untenablebecause the apparent couplet is present with evengreater intensity in acidic methanol, in which the tertiaryamine group has been quaternised and shows noabsorption in the region of 200 nm. The coupledoscillator or exciton chirality treatment has beenapplied primarily to compounds containing a pair ofidentical or almost identical chromophores, by, forexample, Mason 26 (cf. refs. 27 and 28); it has recentlybeen applied to pairs of chromophores, the members ofwhich are of significantly different character althoughthe energies of the transitions involved are ~ i m i l a r . ~ . ~ ~The 13a- and 13P-hydroxy-2-oxo-1 la-sparteines showc.d.curves generally similar to those of the parentoxo-compound. The two 17P-hydroxy-substituted 2-oxo-llct-sparteines (6) as salts have an additionalCotton effect at about 255 nm which is not present forthe other 2-oxosparteines ; the short-wavelength nega-tive maxima near 200 nm are very much more intense(A -20) than those for the rest of the series. TheH. Basch, 31. B. Robin, and N. A. Kuebler, J . Chem. Phys.,1968, 49, 5007.C. G. Overberger, G. Montando, J. Sebenda, and R. A.Veneski, J . Anzer. Chem. SOC., 1969, 91, 1256.*O J. A. Schellman, Accounts Chcm. Xes., 1968, 1, 144.*l D. W. Urry, Ann. Rev. Phys. Chent., 1968, 19, 477.22 H. Wolf, Tetmhedrogz Letters, 1965, 1075; 0. Cervinka, L.Hub, 1:.Snatzke, and G. Snatzke, Coll. Czech. Chem. Comm., 1973,88, 897.f3 W. Klync and P. M. Scopes in ‘ Fundamental Aspects andRecent Developments in O.R.D. and C.D.,’ ed. F. Ciardelli and1’. P. Salvadori, Heyden, London, 1973, p. 126.24 M. Goodman, C. Toniolo, and J. Falcetta. J . Amer. Chem.SOC., 1969, 91, 1816.25 H. Rehling and H. Jensen, TetvahedrovL Letters, 1972, 2793;H. Ogura, H. Takayanagi, K. Kubo, and K. Furuhata, J . Amer.Chew. SOC., 1973, 95, 8056; H. Ogura, H. Takayanagi, and K.Furuhata, Ckcm. LrtteiTs, 1973, 387.maximum near 255 nm presumably arises from tlieprotonated carbinolamine structure “-16, C( 17)-OH,which exists as an iminium salt (Nf=C) in the presence ofstrong acid (for chiroptical properties of C=N groupssee ref.31a).( 6 )2,13-Dioxo-lla-sparteine (7) has: in addition to thelactam group and the tertiary nitrogen, a ketoniccarbonyl chromophore at C-13 which gives rise to amoderate negative Cotton effect near 295 nm (n _t X*transition). The molecule is believed to exist in aconformational equilibrium containing equal proportionsof the all-chair and ‘ c-boat ’ conformers; for eitherconformation the observed negative Cotton effect is inaccordance with the prediction of tlie Octant Rule, asrefined recently.32 (0.r.d. measurements for a 40x0-sparteine have been reported.) On addition of acidto the methanolic solution the ketonic Cotton effect forcompound (7) disappears, owing to hemiacetal form-ation; the form of the c.d. curve is then the same asthat for 2-0x0-1 la-sparteine and its hydroxy-derivatives.10-0x0-1 la-sparteine (8) gives astrong apparent c.d.couplet of opposite sign to that ofthe 2-oxo-analogue in hexane and methanol; this maybe a reflection of the fact that the surroundings of theamide chromophores in the two compounds (i.e. rings Aand B) are quasi-enantiomeric. However, the c.d. curvefor 10-oxo-lla-sparteine in acidic methanol is of thesame sign as for the 2-oxo-analogue. The c.d. curves for15-oxo-lla-sparteine are of opposite sign to those forthe 2-oxo-analogue ; the amide chromophore here ispart of the CD ring fragment of the molecule and (if wedisregard possible conf ormational differences) is of atype quasi-enantiomeric to that in the 2-oxo-compound.The c.d.results for 17-oxo-lla-sparteine are distin-guished from those of the 2-oxo-analogue by the smallermagnitudes of the Cotton effects; the signs are the sameas those of the bands for the 2-oxo-compound in hexaneand in methanol; in acidic methanol the signs arereversed.Other oxosparteines.26 S. F. Mason and G. W. Vane, J . Chetn. SOC. ( B ) , 1966, 370;for a list of applications and correlations with the Bijvoet X-raytechnique, see S. F. Mason, J.C.S. Chem. Comm., 1973, 239.27 0. E. Weigang, jun., and M. J. Nugent, J . Amer. Chem. SOC.,1969, 91, 4555.28 N. Harada and K. Naksnishi, Accounts Chem. Res., 1972, 5,257.20 N. Harada, J . Amer. Cltem. SOC., 1973,95, 240; M. Koreeda,N. Harada, and I(. Nakanishi, ibid., 1974, 96, 266.30 G.Ohloff, E. Otto, V. Rautenstrauch, and G. Snatzke, Helv.Chim. Ada, 1973, 56, 1874.31 P. CrabbC, ‘An Introduction to the Chiroptical Methods inChemistry,’ Mexico 1971, (a) p. 64; (b) pp. 54-56.32 D. N. Kirk and W. Klyne, J.C.S. Perkist I , 1974, 1076.33 S. I. Goldberg and R. F. Moates, J . Org. Chem., 1967, 32,1832.a4 C. Djerassi, L. A. Mitschcr, and B. J. Mitscher, J . Anzrr.Chem. SOC., 1959, 81, 9472570 J.C.S. Perkin IDiZactam. The only dilactam available is 2,17-dioxo-lla-sparteine (9). The c.d. curve in methanol is un-usual in showing two maxima of the same sign (positive)at about 220 and 206 nm; as expected it is virtuallyunchanged by addition of acid. In contrast, the c.d.3 m 2 NI APh( 9 ) (10)curve in hexane shows a very strong ‘ couplet ’ (A-10, 216 nm; +22, 204 nm).Data for this compound (described as ‘ D-OXO-lupanine ’) in other solvents have been published.352-AryZs~arteines.-C. d.data for 2a-phenyl-1 I a-sparteine (10) and the corresponding 2,3-didehydro-compound (which are insoluble in hexane) are presentedfor methanolic and acidic methanolic solutions (Table 3).2oc-Phenyl-lla-sparteine shows a small positive Cottoneffect centred at 261 nm, with the vibrational finestructure characteristic of the aromatic nucleus. Thesign of this lLb Cotton effect, is as expected, unaffectedby protonation. Maxima below 220 nm arise from thesuperposition of Cotton effects due to the aromaticnucleus (IL, transition) and the tertiary nitrogen.The 2,3-didehydro-compound exhibits in methanol aseries of overlapping Cotton effects with positive maximaat 277 and 246 nm (styrene chromophore) 31b and ashoulder at 219 nm.On addition of acid there is a35 F. A. Bovey, Pure Appl. Chem., 1968, 16, 417.marked change in the c.d. curve; the first two maximaare negative (at 267 and 255 nm) and the next is positiveat 213 nm with a shoulder at 222 nm.TABLE 3C.d. of arylsparteinesFree base(MeOH)r A€2-Phenyl-lla-sparteine (10) + 0.23 + 0.24 + 0-23+0-17 + 1.07- 5.62sh- 8.04 !2,3-Didehydro-2-phenyl- + 6.041 la-sparteine + 7.81 + 2.84sh- 4.26 IX/€lm’268261255248219202195277246219203This inversionSalt(MeOH)bAc A/nm+0*17 268+0*19 261+0*13 255+0*09 248-0.80 215-1.89 267-1.30sh 255+2*37sh 222+3*20 213of sign is presumably associated partly with the isomeris-ation of the double bond from 2,3- to 1,2- (which isknown to occur on protonation of 2,3-didehydro-2-phenylsparteine), and also with the related change inconformation from CD boat-chair to all-chair.EXPERIMENTALAll compounds examined were available from thecollection of M. W. in Poznafi. Compounds available as thefree base were examined in hexane and in methanol; theywere converted into salts by the addition of aqueous10M-hydrochloric acid (1 drop) to the rnethanolic solutionof the base (ca. 5 ml}; two compounds available only asthe perchlorate were converted into the free base bydissolving the salt in water, adding alkali, and extractingthe base into ether.C.d. curves were recorded on a Jouan Dichrographe 185with solutions of concentration 1 mg ml-l or less and pathlengths 10 mm or less. U.V. absorption data were re-corded for the same solutions on a Unicarn SP 800 spectro-meter.The London authors thank the S.R.C. for a researchgrant, and the Poznafi authors thank the Polish Academyof Sciences for support.4/1616 Received, 2nd August, 1974
机译:1974 2565手性光学研究。Part LXXXVII.l Circular Dichroism of SomeSparteine Alkaloids作者:William Klyne,“ P. Molly Scopes, and R. Nigel Thomas, Westfield College, Hampstead, London NW3 7STJerzy Skolik, Jacek Gawrosriki, and Maciej Wiewiorowski, A. Mickiewicza University, Poznari, PolandC.d.已经记录了与11个P-斯帕替因(a-异-斯巴汀)和1 1个a-斯巴汀有关的17种斯巴达汀系列化合物的数据。涉及的发色团是叔胺和NN二烷基-内酰系统;研究的化合物包括八种胺、八种氨基内酰胺和一种地内酰胺。THE sparteine 生物碱在光学研究中具有相当大的兴趣,因为它们在由四个融合的六元环组成的相当刚性的系统中含有两种不同类型的发色团(NN-二烷基内酰胺和叔亚胺)(1)。该骨架可以被认为是Westfield系列中的前方papcr,迄今为止标题为“光学旋转色散和圆二色性”,PartLXXXVI,L.Bartlett,D.N.Kirk和P.M.Scopes,J.C.S.P e r k k I,1974,2219.as 两个喹啉西啶系统融合在一起,或作为二氮杂双环[3.3.llnonane,其两端各延伸一个六元环(一般参考文献见参考文献2)。酰胺的手性“生物碱”,编辑 R. H. I?。Manske, Academic Press, New York and London: N. J. Leonard in vol. 3, 1963, p. 119, and vol.6, 1960, p. 253;F. Bohlmann 和 D. Schumann 在 yol。9,1967年,第191页;R.K.Hill in ' Chemistry of the Alkaloids, ed.S. W.Pelletier, Van Nostrand, New York, 1070, pp. 418-4222566 J.C.S. Perkin Ichromophore 已被大量研究,尽管不是在这里发现的取代模式中;关于叔胺的 Chiroptjlcal 研究很少。一些 0.r.d.对 sparteine 衍生物的测量已被 rep~rted.~Conjiguration 和 Nomendatwe.-该组化合物的绝对构型从 Okuda 的研究中得知.* 大多数已知的天然化合物具有式 (2) 中所示的 C-6、C-7 和 C-9 的构型;特别是,它们具有 6p(H) 配置(就类固醇配置而言)。C-11 的构型是可变的,我们建议对于半系统命名法,词干名称“sparteine”应暗示 (2) 中所示的构型 C-6、C-7 和 C-9,即 (6R,7S,9S),并且氢原子(或任何取代氢的基团)在 C-11 处的构型应表示为 a 或 p,遵循 ~ter0id.s.~Thus 化合物 (3) 的模式, 迄今为止简称为“spar-teine”,成为 11 a-sparteine;' cc '4sosparteine (2)变成 11 P-sparteine.Conformation and Symmetry.-1 1 p-Spaxteine (2) 是刚性分子,在所有情况下都具有全椅子构象 (2A) ;它的骨架显示C,对称性,可以表示为金刚石网络的一部分。llcc-sparteine系统(3)既可以存在于“全椅子”构象(3A)中,也可以存在于环c是船的构象中,其余三个环是椅子(3B)。通过i.r.和n.m.~.~*'光谱对sparteine生物碱的构象进行了广泛的研究。任何特定的 11 a-化合物的构象取决于环取代基的性质和位置、状态(结晶或溶液)以及溶剂的特性。对于许多 lla-compoundsn.m.r.I.R.测量表明极性溶剂中的全椅子构象,但在非极性溶剂中“C-boat”构象;然而,在某些情况下,“c-boat”构象也可能发生在S中。伊斯坎德罗夫和 S. Yu。尤努索夫,希姆。普里罗德。Soedinenii,1970,8,494 (Chem. Nut.化合物, 1970,6,519) ;S.伊斯坎德罗夫,R.A.沙马尔达诺夫。和 S. Yu。Yunusov, 同上, 1971, 7, 636(Chem.化合物, 1971, 7, 615).4 S.Okuda, K. Tsuda, andH.片冈。Chem. a7d Ind., 1961,1116, 1751;参见 W. Klyne 和 J. Buckingham, An Atlas ofStereochemistry,' Chapman and Hall, London 1974, p. K21.1.U.P.A.C.-I.U.B.类固醇命名规则,PureAppl。化学, 1972, 31, 286.(a) P. Baranowski, P. Skolik, and M. Wiewiorowski, Tetra-hedron, 1964,20, 2383;(b) M. Wiewiorowski, 0.E.爱德华兹和M。D. Bratek-Wiewiorowska, 加拿大 J .化学, 1967, 45, 1447;(c) J. Skolik, P. J. Krueger, and M. Wiewiorowski, Tetrahedmn,1968, 24, 6439;( d ) J. Skolik、M. Wiewiorowski 和 K. Jedrze-jczak。牛。Acad. polon.Sci. Sir. chim., 1969, 17, 201;(e) J .Skolik, M. Wiewiorowski, 和 P. J. Krueger, J .莫特。Strztcture,1970, 5, 461.分子内氢键合的极性溶剂(参见第2567页)。人们希望,在各种溶剂中的c.d.测量将提供关于构象的进一步证据;然而,C.D.的结果显示与I.R.研究没有明显的相关性。在目前对烫化物和叔胺的c.d.行为的了解状态下,我们的c.d.结果因此以经验方式单独呈现。双-(叔胺).-这些化合物包括11 a-sparteine,11 p-sparteine及其羟基衍生物,其中唯一的发色团是喹啉西啶系统桥头的叔氮原子。早期关于三级 Y( 2 1 ( 2A 1 全椅,'Ilp-H( 3A 1 全椅,llcc-Hamines)的 U.V. 吸收数据总结(38 ) chair, chair,吸收C.d. 吸收 C.d.化合物1 l(3-Sparteine(' a '-异司大氨酸)1 la-Sparteine(Spar teine)4a(eq) -羟基-1 la-sparteine12P(ax)-羟基-l la-sparteine13a(eq) -H ydroxy- 1 1 a-sparteine13p(~x) -羟基-1 la-sparteine羽扇豆碱EpilupinineE368081807300520081007300710046004300A/nm240210205198198201201198205A&t + 2-79- 8.89+&1! - 0-39 + 3.12$2.11-0.17 + 0.78+0-12 - 0.40 + 1-98-2.8!- 0.36 + 3.98- 0.54+3*61 + 0.29- 1-2 I + 0.05- 0.35 + 0*4!A/nm245217194236202-208189238220234213198186237208237208209195225204185&A/nm A&t1880 225 + 1.224800!202 - 3.55- 0.063600 199 + 0.59 + 1.6!3500 206 + 0.46- 1.063850 203 + 1.683300 203 + 1-98+0*11A/nm230206242208195200202197201211* 本表中列出的化合物均未显示任何 c.d.in 酸性甲醇。t 所有 A& 值都是最大值,除了那些标记的 !(测量的最低波长).六种羟基衍生物。我们发现 11 对 sparteine 在己烷中的最大吸收值为 210 nm (E ca. 8180),肩部为 240 nm (e 3680);有和没有羟基的系列的其他成员在大约200-205nm处显示出相似的吸收带,但在大多数情况下,240nm处的肩部无法检测到。Lupinine 和 epilupinine (a) 是 sparteine 骨架的一半有用模型,在大约 200 nm 处显示出 E ca.4000.l2 R. G. Kostyanovsky、I. M. Gella、V. I. Markov 和 2.E.Samojlova, Tetvahedron, 1974, 30, 39.l3 E. Tannenbaum, E. M. Coffin, and H. Harrison, J .Chem.Phys., 1953,21, 311;L. W. Pickett、ME Corning、GM Wieder、DA Semenow 和 JM Buckley, J .Amer. Chem. Soc., 1953, '45,1618.l4 J. C. Craig 和 S. K. Roy, 四面体, 19ti5, 21, 401;J. C.Craig, ' Some Newer Physical Methods in Structural Chemistry', ed. R. Bonnett, London, 1967, p. 170;H. C. Beyerman, L. Maat,J. P. Visser, J. C. Craig, and R. P. K. Chan, Rec. Trav. chim., 1969,88, 1012;G. Fodor, E. Bauerschmidt, and J. C. Craig, 加拿大化学杂志, 1969, 47, 4393;HC Beyerman、S. van den Bosch 和 J.H.布伦克,Rec.Trav。化学, 1971, 90, 755;H. C. Beyerman,B. S. L. Bordes, L. Maat, and F. M. Varnaar, 同上,1972, 91,1441.正如预期的那样,在甲醇溶液的酸化中,条带消失了。11 p-Sparteine 首先被认为是因为它固有的 C,对称性;它在 245 nm 处显示 Liexanea 中度正 C.D. 带,在 217 和 r h E A/nm AE A/nm E A/nm A5 i A/nin17,80017,2507 7006OOsh2200530sh570018,00010,600770sh13,400215209207250208265211206210241209+ 5.30- 4-37- 4.68 -+ 4.32- 9.28 + 6-95 + 0.80sh + 1.16+ 1.05~h- 2.67-/- 3.03- 7.20 + 3.31- 7-34 + 8.44 + 0.53- 1.05 - 1-42 -+ 4.25- 7-98+5*0!+ 0.88- 10.2+11*7!- 3.32 + 2.37sh+ 3-82+ 7.90+5-7!- 7.14-5.10236215193235208190245235208254235208241210190233209298a24321119424422018523321520723621820519316,20018,0006100GO0085008OOsh21001200sh620018,70011,9007400210205'1 1211205255211260209205206211+ (3.96 - G.96+ 5.83- 6.17$- 4.80- 4.45-b 5.49- 7.45- 0.21 + 1.48- 2.094- 0.62- 0.56- 1.47-f- 1.33- 1-95+3.3!- 6-95 + 6.04- 5.24+5.4!+ 2.46+ 2.7 !- 1.43d3 999198224200223200224197259 C225207225206293 d246212195220202226206223210197-0.26 264+3-64 333 -0.04 26212,900 207 -10.2 216 13,200 209 +7.92 220+22-8 204 +7-7!206甲醇中的盐 aC.d.:I bsorptionE Alnm AE t A/nm+8.35 22712,500 207 -17.0 202+6*52 22415,400 205 -9.26 200+5*55 222--8*9!197+6*28 224-8.63 197-2.53 257*+1-89 220-23.0 203-2.18 254*-21.0 201+590 255-7*2!20016,900 207 -12.4 203+4*83 227-1.22 255+3*4!206-0.82 228+4*08 205-0.05 264f8-13 219+7.68 2067 除标有 sh(肩部)或 !(测量的最低波长).a 通过向碱的甲醇溶液中加入过量的 HCl 形成盐,除了在两种情况下标有 * 使用结晶高氯酸盐.13a-羟基-15~-(5-羟甲基-2-呋喃基)-2-氧代-l la-sparteine 也被检查为甲醇 [AE + 7.94 (228 nm), -3.97 (201 nm), -6.2!(195纳米)]和酸性甲醇 [AE + 10.8 (225 nm), -8.6 (201 nm)];该化合物不溶于己烷。在从高氯酸盐中释放的碱上测量。酮 n + x* 带,即使在羟基溶剂中。羽扇豆碱(4;P-CH,OH)和表卢萡宁(4;a-CH20H)在所有四个可能的位置(2、10、15和17)都显示出c.d.条带,但在更对称的11P-sparteine系列中,只有2-氧代化合物可用。已经研究了各种羟基-2-氧代-1 la-sparteine,以及 2,13-二氧代-1 la-sparteine,其中 13-氧代基具有正常的酮性。没有理由认为取代酰胺基团的c.d.行为在酸性甲醇中会发生显著改变;疾病预防控制中心约200 nm处的胺条带被酸13和观察到的dc.d抹去。酸中的单内酰胺单氨基化合物大概基本上是内酰胺铬基团的单内酰胺(受季氮扰动).deO“ m,30( 4 ) ( 5 1 比 11 cc- 和 11 P-sparteine 中的双(叔胺)骨架所给出的强度要低得多.乳酸-叔胺 (Oxosparteitzes) .-几个 im1974关于内酰胺的 U.V. 吸收的文献数据 aresparse.ls~~~ 我们发现,对于所研究的三种内酰胺,U.V.maxima 在 205-207 nm (cmx. 12,000--17,000) 酸性甲醇, 在(中性)甲醇和己烷中,在相似波长下具有更强的最大值。没有广泛的内酰胺类药物数据收集;最近的一些论文,其中可以找到对早期工作的引用作为参考文献。20-25(以及18和19);这些参考文献中考虑的化合物很少是 NN-二烷基内酰胺类化合物,这种化合物在 sparteine 系列.C.d. 对手性胺的乙酰氨基衍生物的研究,似乎显示出令人惊讶的构象刚性测量,也被注意到.2-0xo-conzpo.unds.我们首先考虑 2-氧代-l l a-和 l l p-sparteines (5) 不携带其他取代基;每种化合物在低至约 200 nm 时产生 samec.d。己烷、甲醇和酸性甲醇中的模式;即约225-230nm处的强正带和约200-215nm处的强负带。在大约 190 nm 处的进一步条带对 llp- 呈阴性,对 lla-化合物呈阳性。将前两个条带视为一对是很容易的,因为两个发色团之间的相互作用,其跃迁的能量大致相同。然而,这种假设是站不住脚的,因为在酸性甲醇中,明显的对联具有更大的强度,其中叔胜胺基团已被季铵化,并在 200 nm 范围内显示出吸收。耦合晶体或激子手性处理主要应用于含有一对相同或几乎相同的发色团的化合物,例如Mason 26(参见参考文献27和28);它最近被应用于成对的发色团,其成员具有显着不同的特征,尽管所涉及的跃迁的能量是 ~ i m i l a r 。~ .~ ~13a-和13P-羟基-2-氧代-1 la-sparteines显示出与parentoxo化合物大致相似的曲线。两种 17P-羟基取代的 2-氧代-llct-sparteines (6) 作为盐在大约 255 nm 处具有额外的棉花效应,而其他 2-氧代天冬氨酸则不存在;接近200 nm的短波长负极大值比该系列其余部分的负极大值(A&-20)强得多。H。巴斯奇,31岁。B. Robin 和 N. A. Kuebler, J .Chem. Phys.,1968, 49, 5007.C. G. Overberger, G. Montando, J. Sebenda, and R. A.Veneski, J .安泽尔。Chem. SOC., 1969, 91, 1256.*O J. A. Schellman, Accounts Chcm.Xes., 1968, 1, 144.*l D. W. Urry, Ann. Rev. Phys. Chent., 1968, 19, 477.22 H. Wolf, Tetmhedrogz Letters, 1965, 1075;0. 切尔文卡,L.Hub,1:。Snatzke 和 G. Snatzke,捷克上校。Chem. Comm., 1973,88, 897.f3 W. Klync 和 P. M. Scopes in ' Fundamental Aspects andRecent Developments in O.R.D. and C.D.,' ed. F. Ciardelli and1'.P. Salvadori,Heyden,伦敦,1973 年,第 126.24 页 M. Goodman、C. Toniolo 和 J. Falcetta。J .Amer. Chem.SOC., 1969, 91, 1816.25 H. Rehling and H. Jensen, TetvahedrovL Letters, 1972, 2793;H. Ogura, H. Takayanagi, K. Kubo, and K. Furuhata, J .Amer.Chew. SOC., 1973, 95, 8056;H. Ogura, H. Takayanagi, and K.Furuhata, Ckcm. LrtteiTs, 1973, 387.maximum near 255 nm 可能来自二质子化甲醇胺结构“-16,C( 17)-OH],在强酸存在下以亚胺盐 (Nf=C) 形式存在(C=N 基团的手性光学性质参见参考文献 31a)。( 6 )2,13-二氧代-lla-sparteine (7) 具有: 除了内酰胺基团和叔氮外,C-13 处的酮羰基发色团在 295 nm 附近产生中度的负 Cotton 效应 (n _t X*transition)。该分子被认为存在于非构象平衡中,含有等比例的全椅子和“c-boat”构象;对于任何一种构象,观察到的负棉花效应都与最近改进的 tlie Octant 规则的预测不一致.32 (0.r.d. 40x0-sparteine 的测量值已被报道。%) 在甲醇溶液中加入酸时,由于半缩醛形成,化合物 (7) 的酮棉花效应消失;10-0x0-1 La-Sparteine (8) 的 C.D. 曲线形式与 2-0x0-1 La-Sparteine 及其羟基衍生物的 C.D. 曲线形式相同.10--1 La-Sparteine (8) 给出与己烷和甲醇中 2-氧代类似物相反符号的强烈明显 C.D. 对联;这可能反映了这样一个事实,即两种化合物(即环A和B)中茶酰胺发色团的周围是准对映体的。然而,酸性甲醇中 10-氧代-lla-sparteine 的 c.d. 曲线与 2-氧代类似物的符号相同。15-氧代-lla-sparteine 的 c.d. 曲线与 2-氧代类似物的 c.d. 曲线相反;这里的酰胺发色团是分子的CD环片段的一部分,并且(如果我们忽略可能的混淆差异)与2-氧代化合物中的对映体不是一种类型。17-氧代-lla-sparteine的c.d.结果与2-氧代类似物的c.d.结果因棉花效应的较小幅度而不同;其符号与己烷和甲醇中2-氧代化合物的条带相同;在酸性甲醇中,符号是相反的。其他氧代天冬氨酸.26 S. F. Mason 和 G. W. Vane, J .切滕。SOC. ( B ) , 1966, 370;有关Bijvoet X射线技术的应用和相关性列表,请参阅S. F. Mason, J.C.S. Chem. Comm., 1973, 239.27 0。E. Weigang, jun. 和 M. J. Nugent, J .Amer. Chem. SOC.,1969, 91, 4555.28 N. Harada and K.Naksnishi, Accounts Chem. Res., 1972, 5,257.20 N. Harada, J .阿梅尔·克特姆。SOC., 1973,95, 240;M. Koreeda、N. Harada 和我(.Nakanishi, 同上, 1974, 96, 266.30 G.Ohloff, E. Otto, V. Rautenstrauch, and G. Snatzke, Helv.Chim.Ada, 1973, 56, 1874.31 P. CrabbC, 'An Introduction to the Chiroptical Methods inChemistry', Mexico 1971, (a) p. 64;(b) pp. 54-56.32 D. N. Kirk and W. Klyne, J.C.S. Perkist I , 1974, 1076.33 S. I. Goldberg and R. F. Moates, J .Org. Chem., 1967, 32,1832.a4 C. Djerassi, L. A. Mitschcr, and B. J. Mitscher, J .Anzrr.Chem. SOC., 1959, 81, 9472570 J.C.S. Perkin IDiZactam.唯一可用的地内酰胺是 2,17-二氧代-lla-sparteine (9)。甲醇中的c.d.曲线在大约220和206 nm处显示出两个相同符号(正)的最大值;正如预期的那样,它几乎不会因添加酸而改变。相反,己烷中的c.d.3 m 2 NI APh( 9 ) (10)曲线显示出非常强的“对联”(A&-10,216 nm;+22,204 nm)。该化合物(描述为“D-OXO-lupanine”)在其他溶剂中的数据已经发表.352-AryZs~arteines.-C.d.2a-苯基-1 I a-sparteine (10) 和相应的 2,3-二脱氢化合物(不溶于己烷)的数据(表 3).2oc-苯基-lla-sparteine 显示出以 261 nm 为中心的小正 Cotton效应,具有芳香族核的振动精细结构特征.这种lLb棉花效应的迹象,正如预期的那样,不受质子化的影响。220 nm以下的最大值是由芳香核(IL,转变)和三级氮引起的棉花效应叠加引起的。2,3-二脱氢化合物在甲醇中表现出一系列重叠的棉花效应,最长为正,最长为277和246 nm(苯乙烯发色团)31b,在219 nm处为正最大值。在加酸时,有a35 F. A. Bovey, Pure Appl. Chem., 1968, 16, 417.c.d.曲线的显著变化;前两个最大值为负(在267和255 nm处),下一个在213 nm处为正值,肩部为222 nm。表3芳基三甲基氨基苯乙烯游离碱(MeOH)r的C.d.2-苯基-lla-天冬氨酸(10)+0.23+0.24+0-23+0-17+1.07-5.62sh-8.04 !2,3-二脱氢-2-苯基-+ 6.041 la-sparteine + 7.81 + 2.84sh- 4.26 IX/€lm'268261255248219202195277246219203这种反转盐(MeOH)bAc A/nm+0*17 268+0*19 261+0*13 255+0*09 248-0.80 215-1.89 267-1.30sh 255+2*37sh 222+3*20 213的符号可能部分与双键从2,3-到1,2-的异构体化有关(已知发生在质子化上)2,3-二脱氢-2-苯基斯潘汀),以及从CD船椅到全椅的相关变化。实验所有检查的化合物均来自波兹纳菲的M.W.的收藏。在己烷和甲醇中检查了可作为游离碱的化合物;通过向碱的RNETHANOLIC溶液(ca.5毫升};通过将盐溶解在水中,加入碱,并将碱提取到乙醚中,将两种仅作为高氯酸盐的化合物转化为游离碱.C.d.曲线记录在Jouan Dichrographe 185上,溶液浓度为1 mg ml-l或更低,光程为10 mm或更小。紫外线吸收数据在Unicarn SP 800光谱仪上重新布线,用于相同的溶液。倫敦的作者感謝S.R.C.的研究資金,波茲納菲的作者感謝波蘭科學院的支持。[4/1616 收稿日期:1974年8月2日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号