首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis and proton nuclear magnetic resonance spectra of diastereoisomeric ethyl 3-hydroxy-2-methyl-3-(p-substituted phenyl)butyrates
【24h】

Synthesis and proton nuclear magnetic resonance spectra of diastereoisomeric ethyl 3-hydroxy-2-methyl-3-(p-substituted phenyl)butyrates

机译:非对映异构体3-羟基-2-甲基-3-(对取代苯基)丁酸乙酯的合成及质子核磁共振谱

获取原文
获取外文期刊封面目录资料

摘要

2548 J.C.S. Perkin ISynthesis and Proton Nuclear Magnetic Resonance Spectra of Diastereo-isomeric Ethyl 3-Hydroxy-2-methyl-3-(p-substituted phenyl) butyratesBy Aldo Balsamo, Pier Luigi Barili, Paolo Crotti, Maria Ferretti, Bruno Macchia,' and Franco Macchia,A series of erythro- and threo-ethyl 3-hydroxy-Z-methyl-3- (p-substituted phenyl) butyrates has been preparedThe l H n.m.r. spectra of these compounds and their use in assigning diastereoisomeric configurations are discussedlstituti di Chimica Farmaceutica e di Chimica Organica dell'Universit8, 561 00 Pisa, ItalyIN connection with a programme for the synthesis ofcompounds of pharmacological interest ,l it was necessaryto prepare a series of ethyl 3-hydroxy-2-methyl-3-($-substituted pheny1)butyrates (111) and (IV).Pureerythru- (111) and threo-diastereoisomers (IV) were alsoneeded2 (Table 1). Mixtures of (111) and (IV) wereobtained from the Reformatsky reaction of aceto-phenones (I) with ethyl cc-bromopropionate (11). Thediastereoisomeric composition of these mixtures changes1 A. Balsamo, P. L. Barili, P. Crotti, B. Macchia, F. Macchia,A. Pecchia, A. Cuttica, and N. Passerini, submitted for publicationin J . Medicin. Chem.A. Balsamo, P. L. Barili, P. Crotti, M. Ferretti, B. Macchia,and F. Macchia, Tetrahedron Letters, 1974, 1005.with the reaction time, owing to a slower equilibrationof (111) and (IV) in the reaction The com-positions of the crude reaction mixtures after 2 h reactionare shown in Table 2; the erythro-p-hydroxyesters (111)predominate in each case, in agreement with the resultsof the analogous reaction of unsubstituted acetophenone(I; R = H).394 The isomers (111) and (IV) wereseparated by preparative g.1.c.and t.1.c. Conformationalanalysis of these esters through their n.m.r. spectra canJ. Canceill, J.-J. Basselier, and J. Jacques, Bull. SOC. chim.Y . Beziat and M. Mousseron-Canet, Bull. SOC. chtm. Fmnce,France, 1967, 1024.1968, 11871974 2549be used to assign the relative configurations to thesecompounds.By calculating the non-bonding gazde interactionsand possible attractive interactions (such as intramolecu-lar hydrogen bonding) between groups in the threectiastereoisomers (IVb and c). Therefore, the popul-ations of these conformers should be favoured * withrespect to those of conformers (IIIb) and (IVa), respec-tively.Of conformers (IIIa) and (IIIc), (IIIa) shouldbe favoured because of the strong Ar-Me interactionH(d) H (dl( C l ( e l ( a )CH3 ( C 1 t C02CH2CH3 (el (a)CH3 t C02CH2CH3TABLE 1erythro-(111) and fhveo-Ethyl 3-hydroxy-2-methyl-3-(fi-substituted phenyl) butyrstesIH N.m.r. spectra (6 values, J in Hz)AP- Found (yo) Required () ICompoiiiid nD20 C H Formula C H CH3(a) CH3(b) CH3(c) H(d) CH2(e) C,H4R(f) Jae(111; R = MeO) 1.5066 68-56 8.0 C,4H.#4 66.65 8.0 1.00 1.45 1.32 3-00 4.00 7.34 7.12(111; R = Me) 1.4981 70.95 8.5 C14Hzo03 71.15 8.55 0.98 1.43 1.30 2-97 3.92 7-15 7.08(111; R = H) 1.4977 C13H1803 0.95 1.44 1.31 2-97 3.91 7-32 7.110*90d 1 ~ 3 0 ~ 1.23 2.85" 3.780.90 C 1-33 e 1.27 e 2.89 e 3-80 e(111; R = 1;) 1.4840 64.95 7.2 C,,H,,FO, 65.0 7.15 0.99 1-43 1.31 2-97 3.93 7.17 7.14(111; R = C1) 1.5114 G1.05 6-7 Cl3HI7C10, 60.8 6.65 0.99 1.41 1.30 2.92 3.92 7.35 7.10(111; R = Br) 1.5267 51.8 5.7 C,,H,,BrO, 51.85 5-7 1.00 1.41 1.31 2.96 3.93 7.35 7-10(IV; R = MeO) a 66.8 8-05 Cl4HZ,O, 66.65 8.0 1.30 1.57 0.98 2.84 4.31 7.26 7.16(IV; R = Me) 1.4992 71.3 8.55 C14H2,,03 71.15 8.55 1.30 1-56 0.96 2.81 4.22 7.22 7.10(IV; R = H) 1.4984 C13H1803 1.20 1.56 0.95 2.81 4.22 7.37 7.101.22 1.42'l 0*85d 2.80d 4*10a1.28 1.46 0.89 2.72" 4*15O(IV; R = F) b 65-05 6.9 C13H,,F0, 65.0 7.15 1.29 1.55 0.95 2.80 4-22 7.21 7.11(IV; R = CI) c 60.95 6.5 CI3H1,CIO3 60.8 6-65 1-29 1-54 0.95 2-80 4.23 7.37 7.11(IV; R = Br) 1.5261 52.0 5.7 C,,H,,BrO, 51.85 5-7 1.29 1.55 0.95 2.80 4.24 7.37 7.08a M.p.31-31.5" (from light petroleum). M.p. 56-57" (from light petroleum). M.p. 55-56" (from light petroleum).CS2 s ~ l u t i o n . ~ For CC14 s ~ l u t i o n . ~-7J c d7.107.127.137-057.147.137-107.127-127.157.127.10d Forstaggered rotamers of (111) and (IV),6 we can predictwhich conformation will be preferred for each isomer;these conformations would be expected to lead to signifi-cant differences in the n.1n.r. spectra of the two diastereo-isomers. On the basis of the value of their conformation-a1 free energy differences,6.7 the groups attached to theTABLE 2Composition () YieldR (111) (IV) B.P. ("C) mmHgl ()Me0 74 26 145-150 4.5 60Me 73 27 138-142 4 64H * 71 29 108-1 11 0*8 70F 68 32 155-160 6 86c1 69 31 15G-155 6 85Br 64 36 15G-156 3*5 92* Lit.(J. Canceill, J. Gabard, and J. Jacques, Bull. SOC.chim. Fiauce, 1966, 2653). b.p. 109-110 "C at 3 inmHg; yield87.asymmetric carbon atoms in (111) and (IV) can bearranged; More-over, hydrogen bonding between OH and C0,Et groupsis possible 3 9 4 in two of the three rotamers of both theerythro-p-hydroxyesters (IIIa and c) and of the threo-E. Id. Eliel, ' Stereochemistry of Carbon Compounds,'McGraw-Hill, New York, 1962, p. 137, et seq.aryl > Me > C0,Et > OH > H.present in (IIIc). This unfavourable interaction ispresent in both conformers (IVb) and (IVc), but con-former (IVb) should be preferred, since the Me-Aleinteraction present in (IVc) is missing.The n.ni.r.spectra of (111) and (IV) should reflect therelative populations of rotamers present at equilibriumand, therefore, should be in agreement with a time-averaged predominance of conformations (IIIa) and(IVb), respectively.Table 1 summarizes the n.m.r. parameters of the F-hydroxyesters (111) and (IV). From an examination ofthese data, it is evident that the spectra agree with theconfonnational hypothesis. The signals of CH,(a),CH3(b), and CH,(e) are at higher fields for the erythro-than for the threo-compounds. On the other hand,the signals of H(d) and CH,(c) of the erythro-esters areat a lower field than the same protons of the threo-series. The centre of the phenyl resonance is at practic-ally the same field or does not alter appreciably in theE.L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison,' Conformational Analysis,' Interscience, New York, 1965, p. 44,et seq.J. A. Hirsch, Topics Stereochem., 1967, 1, 199.8 C. A. Kingsbury, J. Org. Chem., 1970, 35, 13192550 J.C.S. Perkin Itwo series; evidently, the diamagnetic anisotropy of thephenyl group, as well as the deshielding effect of thecarbonyl group, are the main causes of the shifts ob-served. By examining molecular models of the expectedmost stable conformers (IIIa) and (IVb), we can observethat CH,(e) and CH,(a) in the erythro-diastereoisomers,Ar ArAr ArCO2 Et( I I I C )HOCH,( llpa 1Ar Arand CH,(c) in the threo-compounds, are located in theshielding region of the phenyl group.In the threo-diastereoisomers, CH,(b) is situated in the deshieldingregion of the carbonyl group.gIt might seem that the chemical shift of H(d) shouldnot change on passing from one diastereoisomer toanother, because its position relative to the aryl group isthe same in both the preferred rotamers (IIIa) and (IVb) ;however, the shift towards higher fields observed onpassing from the erythro to the threo-series may beattributed to a different rotameric position of the phenylgroup in the two conformers (IIIa) and (IVb), owing toits different relative position with respect to the ethoxy-carbonyl group. The values of the shifts due to thediamagnetic anisotropy of the phenyl group are notaffected by the substituent on the phenyl group; thisshows that the different electronic density on the phenylgroup, depending on the different substituent, does notsignificantly influence the shielding effect of the aromaticgroup.Assignment of the signals was based on the agreementof the measured chemical shifts with those expected, andon the basis of the multiplicity and the integration of thesignals.EXPERIMENTALN.m.r. spectra were determined for ca.10 solutions inCDCl, with a JEOL C-60 HL spectrometer using tetra-methylsilane as internal standard. Chemical shifts andcoupling constants were measured directly from the spectradetermined a t a sweep width of 540 Hz. G.1.c. analyseswere run on a Carlo Erba Fractovap GV apparatus with aflame ionization detector using a dual column system withglass columns (2.5 mm x 2 m) packed with 1 neopentyl-glycol succinate on 80-100 mesh silanized Chromosorb TV;the order of retention times was (111) < (IV).Reformatsky Reaction of Acetophenones (I) with Ethyl a-Bronzopropionate (II).-A portion (8 ml) of a solution of theacetophenone (I) (0.09 mol) and (11) (18.1 g, 0.1 mol) inanhydrous benzene (25 ml) was added to zinc powder(7.20 g, 0.1 mol) and the flask was warmed gently untilthe reaction started.Stirring was then started and theremainder of the solution was added a t such a rate that agentle reflux was maintained. The addition was completein 10 min. The mixture was then refluxed for 2 h, cooled a tOo, and hydrolysed by addition of ice-cold 20 sulphuricacid (35 ml). The organic layer was washed with 10sodium carbonate (20 ml) and with water (40 ml), filtered,and evaporated to dryness. The crude residue was exam-ined by g.1.c. (Table 2) and distilled to give the mixture of(111) and (IV).Sefiaration of (111) and (IV).-Portions of distilled mix-tures of (111) and (IV) were subjected to preparative g.1.c.when R = F, C1, or Br, and to preparative t.1.c. whenR = MeO, Me, or H.Preparative g.1.c. was carried out on a Perkin-Elmermodel F-21 gas chromatograph, using a stainless steelcolumn (8 mm x 2 m) packed with 5 Carbowax 20M on60-80 mesh silanized Chromosorb G.Preparative t.1.c. was carried out on silica gel plates(Merck F254), with light petroleum-ether (90 : 10) as eluant;elution was repeated 4 times and the esters were located withU.V. light (245 nm) ; threo-diastereoisomers were extractedfrom the faster-moving band.This work was supported in part by a grant from theConsiglio Nazionale delle Ricerche.4/ 1 173 Received, 17th June, 197419 G. J. Karabatsos, G. C. Sonnichsen, H. Nsi, and D. JFenoglio, J . Amer. Chern. SOC., 1967, 89, 6067
机译:2548 J.C.S. Perkin ISynthesis and Proton Nuclear Magnetic Resonance Spectra of Anostereo-Isomeric Ethyl 3-Hydroxy-2-methyl-3-(p-取代的苯基)丁酸酯作者:Aldo Balsamo, Pier Luigi Barili, Paolo Crotti, Maria Ferretti, Bruno Macchia,' and Franco Macchia,A series of erythro- and threo-ethyl 3-hydroxy-Z-methyl-3- (p-substituted phenyl) butyrate has been prepared这些化合物的 l H n.m.r. 光谱及其在分配非对映异构构构型中的应用正在讨论lstituti diChimica Farmaceutica e di Chimica Organica dell'Universit8, 561 00 Pisa, Italy在一项药理学化合物的合成计划中,有必要制备一系列3-羟基-2-甲基-3-($取代的苯1)丁酸乙酯[(111)和(IV)]。还需要Pureerythru-(111)和苏式非对映异构体(IV)2(表1)。(111)和(IV)的混合物由乙酰基-苯酮(I)与cc-溴丙酸乙酯(11)的Reformatsky反应获得。这些混合物的非对映异构体组成发生变化1 A. Balsamo, P. L. Barili, P. Crotti, B. Macchia, F. Macchia,A. Pecchia, A. Cuttica, and N. Passerini, submitted for publicationin J .药用素。Chem.A. Balsamo, P. L. Barili, P. Crotti, M. Ferretti, B. Macchia,and F. Macchia, Tetrahedron Letters, 1974, 1005.随着反应时间的增加,由于反应中(111)和(IV)的平衡速度较慢,反应2小时后粗反应混合物的组成位置如表2所示;赤式对羟基酯(111)在每种情况下都占主导地位,与未取代的苯乙酮(I;R = H).394 异构体(111)和(IV)通过制备g.1.c.和t.1.c.分离。通过n.m.r.光谱对这些酯进行构象分析。坎西尔,J.-J.Basselier 和 J. Jacques,Bull。SOC. chim.Y .Beziat 和 M. Mousseron-Canet,公牛。SOC. chtm.Fmnce,France, 1967, 1024.1968, 11871974 2549用于将相对构型分配给这些化合物。通过计算三胞对立异构体(IVb 和 c)中基团之间的非键合 gazde 相互作用和可能的有吸引力的相互作用(例如分子内氢键)。因此,相对于符合者(IIIb)和(IVa)的人口,这些符合者的人口应受到青睐。在构象(IIIa)和(IIIc)中,(IIIa)应受到青睐,因为Ar-Me相互作用较强H(d) H(dl( C l ( e l ( a )CH3 ( C 1 t C02CH2CH3 (el (a)CH3 t C02CH2CH3TABLE 1erythro-(111) and fhveo-Ethyl 3-hydroxy-2-methyl-3-(fi-取代的苯基)butyrstesIH N.m.r.光谱(6个值,J in Hz)AP- 找到 (yo) 需要 (%) ICompoiiiid nD20 C H 分子式 C H CH3(a) CH3(b) CH3(c) H(d) CH2(e) C,H4R(f) Jae(111;R = MeO) 1.5066 68-56 8.0 C,4H.#4 66.65 8.0 1.00 1.45 1.32 3-00 4.00 7.34 7.12(111;R = Me) 1.4981 70.95 8.5 C14Hzo03 71.15 8.55 0.98 1.43 1.30 2-97 3.92 7-15 7.08(111;R = H) 1.4977 C13H1803 0.95 1.44 1.31 2-97 3.91 7-32 7.110*90d 1 ~ 3 0 ~ 1.23 2.85“ 3.780.90 C 1-33 e 1.27 e 2.89 e 3-80 e(111;R = 1;)1.4840 64.95 7.2 C,,H,,FO, 65.0 7.15 0.99 1-43 1.31 2-97 3.93 7.17 7.14(111;R = C1) 1.5114 G1.05 6-7 Cl3HI7C10, 60.8 6.65 0.99 1.41 1.30 2.92 3.92 7.35 7.10(111;R = Br) 1.5267 51.8 5.7 C,,H,,BrO, 51.85 5-7 1.00 1.41 1.31 2.96 3.93 7.35 7-10(IV;R = MeO) a 66.8 8-05 Cl4HZ,O, 66.65 8.0 1.30 1.57 0.98 2.84 4.31 7.26 7.16(IV;R = Me) 1.4992 71.3 8.55 C14H2,,03 71.15 8.55 1.30 1-56 0.96 2.81 4.22 7.22 7.10(IV;R = H) 1.4984 C13H1803 1.20 1.56 0.95 2.81 4.22 7.37 7.101.22 1.42'l 0*85d 2.80d 4*10a1.28 1.46 0.89 2.72“ 4*15O(IV;R = F) b 65-05 6.9 C13H,,F0, 65.0 7.15 1.29 1.55 0.95 2.80 4-22 7.21 7.11(IV;R = CI) c 60.95 6.5 CI3H1,CIO3 60.8 6-65 1-29 1-54 0.95 2-80 4.23 7.37 7.11(IV;R = Br) 1.5261 52.0 5.7 C,,H,,BrO, 51.85 5-7 1.29 1.55 0.95 2.80 4.24 7.37 7.08a M.p.31-31.5“(来自轻质石油)。MP 56-57“(来自轻质石油)。MP 55-56“(来自轻质石油)。CS2 s ~ l u t i o n .~ 对于 CC14 s ~ l u t i o n .~-7J c d7.107.127.137-057.147.137-107.127-127.157.127.10d (111) 和 (IV),6 的交错旋转体,我们可以预测每种异构体的构象是首选的;预计这些构象将导致N.1N.R.的显着差异。两种非对映异构体的光谱。根据其构象值-a1 自由能差值,6.7 附着在表 2 上的基团组成 (%) YieldR (111) (IV) B.P. (“C) [mmHgl (%)Me0 74 26 145-150 [4.5] 60Me 73 27 138-142 [4] 64H * 71 29 108-1 11 [0*8] 70F 68 32 155-160 [6] 86c1 69 31 15G-155 [6] 85Br 64 36 15G-156 [3*5] 92* Lit.(J. Canceill, J. Gabard 和 J. Jacques,公牛。SOC.chim. Fiauce, 1966, 2653)。b.p. 109-110 “C at 3 inmHg;收率87%.(111)和(IV)中的不对称碳原子可以承受;此外,OH和C0,Et基团之间的氢键在茶-p-羟基酯(IIIa和c)和苏-E的三个旋转体中的两个中是可能的3 9 4。同上,Eliel,“碳化合物的立体化学”,McGraw-Hill,纽约,1962年,第137页,et seq.aryl > Me > C0,Et > OH > H.present in (IIIc)。这种不利的相互作用存在于构象 (IVb) 和 (IVc) 中,但应首选构象 (IVb),因为 (IVc) 中存在的 Me-Ale 相互作用缺失。(111)和(IV)的n.ni.r.光谱应反映平衡时存在的轮状体的相对种群,因此,应分别与构象(IIIa)和(IVb)的时间平均优势一致。表1总结了F-羟基酯(111)和(IV)的n.m.r.参数。通过对这些数据的检查,很明显光谱与国家假设一致。CH,(a),CH3(b)和CH,(e)的信号在赤系化合物中的场高于苏系化合物。另一方面,赤酯的H(d)和CH,(c)信号的场低于苏系的相同质子。苯基共振的中心实际上与磁场相同,或者在E.L.中没有明显变化。Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, 'Conformational Analysis, ' Interscience, New York, 1965, p. 44,et seq.J. A. Hirsch, Topics Stereochem., 1967, 1, 199.8 C. A. Kingsbury, J. Org. Chem., 1970, 35, 13192550 J.C.S. Perkin Itwo series;显然,苯基的抗磁各向异性以及羰基的去屏蔽作用是观察到的位移的主要原因。通过检查预期最稳定的构象体(IIIa)和(IVb)的分子模型,我们可以观察到赤式非对映异构体中的CH,(e)和CH,(a),苏式化合物中的Ar ArAr ArCO2 Et( I I I C )HOCH,( llpa 1Ar Arand CH,(c)位于苯基的屏蔽区。在苏式非对映异构体中,CH,(b)位于羰基的去屏蔽区。g看起来H(d)的化学位移不应该在从一种非对映异构体传递到另一种非对映异构体时发生变化,因为它相对于芳基的位置在优选的轮状体(IIIa)和(IVb)中是相同的;然而,从赤式到苏式系列观察到的向更高场的转移可能归因于苯基在两个构象体(IIIa)和(IVb)中的旋转位置不同,因为它相对于乙氧基羰基的相对位置不同。苯基的抗磁各向异性引起的位移值不受苯基上取代基的影响;这表明苯基上不同的电子密度取决于不同的取代基,对芳香族的屏蔽效果没有显著影响。信号的分配基于测量的化学位移与预期位移的一致性,以及信号的多重性和积分。使用使用四甲基硅烷作为内标的 JEOL C-60 HL 光谱仪测定 CDCl 中约 10% 溶液的 EXPERIMENTALN.m.r. 光谱。化学位移和耦合常数直接从光谱中测量,扫描宽度为 540 Hz。 G.1.c. 分析在带有火焰电离检测器的 Carlo Erba Fractovap GV 装置上运行,使用带有玻璃柱的双柱系统 (2.5 mm x 2 m) 在 80-100 目硅烷化 Chromosorb 电视上用 1% 新戊二醇琥珀酸酯填充;保留时间的顺序为(111)<(IV)。将苯乙酮(I)与a-小气丁唑丙酸乙酯(II)的反应重新格式化,将苯乙酮(I)(0.09mol)和(11)(18.1g,0.1mol)无水苯(25ml)溶液(8ml)的一部分(8ml)加入到锌粉(7.20g,0.1mol)中,并将烧瓶轻轻加热直至反应开始。然后开始搅拌,并将剩余的溶液加入到保持剂回流的速率。添加在 10 分钟内完成。然后将混合物回流2小时,冷却tOo,并通过加入冰冷的20%硫酸(35ml)水解。有机层用10%碳酸钠(20ml)和水(40ml)洗涤,过滤,蒸干。粗残留物由g.1.c.检查。(表2)并蒸馏得到(111)和(IV)的混合物。(111)和(IV)的分离-当R = F、C1或Br时,对(111)和(IV)的蒸馏混合物进行制备g.1.c.和制备t.1.c。whenR = MeO、Me 或 H.Preparative g.1.c.在Perkin-Elmermodel F-21气相色谱仪上进行,使用不锈钢柱(8mm x 2 m)填充5%Carbowax 20M和60-80目硅烷化Chromosorb G.Preparative t.1.c。在硅胶板(Merck F254)上进行,以轻质石油醚(90:10)为洗脱剂;重复洗脱 4 次,酯类位于 U.V.光 (245 nm) ;苏式非对映异构体从快速移动的条带中提取。这项工作部分得到了Consiglio Nazionale delle Ricerche的资助。[4/ 1 173 6月17日收稿 197419 G. J. Karabatsos, G. C. Sonnichsen, H. Nsi, and D. JFenoglio, J . Amer. Chern. SOC., 1967, 89, 6067

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号