...
首页> 外文期刊>American Journal of Physiology >Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum.
【24h】

Postulated role of interdomain interactions within the type 1 ryanodine receptor in the low gain of Ca2+-induced Ca2+ release activity of mammalian skeletal muscle sarcoplasmic reticulum.

机译:

获取原文
获取原文并翻译 | 示例

摘要

Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca(2+)-induced Ca(2+) release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using (3)Hryanodine binding, single-channel recordings, and Ca(2+) release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu(2442)-Pro(2477) region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased (3)Hryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca(2+), Mg(2+), and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca(2+) release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca(2+) release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca(2+) handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号