首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >The Stevens rearrangement: an antiaromatic pericyclic reaction?
【24h】

The Stevens rearrangement: an antiaromatic pericyclic reaction?

机译:史蒂文斯重排:反芳香周环反应?

获取原文
获取外文期刊封面目录资料

摘要

1974 1839The Stevens Rearrangement : an Antiaromatic Pericyclic Reaction ?By Michael J. S. Dewar and Christopher A. Ramsden, Department of Chemistry, The University of Texasa t Austin, Austin, Texas 7871 2, U.S.A.The possibility that the Woodward-Hoffmann rules may break down quite generally for very exothermic reactions isdiscussed. MIND0/3 Calculations for a pericyclic mechanism for the Stevens rearrangement support this possi-bility. Although a concerted mechanism for the Stevens rearrangement is formally ‘ forbidden ’ according to theWoodward-Hoffmann rules, the calculated activation energy is extremely small (1 7 kJ mol-l). The calculatedstructure of a benzoyl-stabilized nitrogen ylide is reported and the electrostatic energy of the ylide is estimated.IN the classic article by Woodward and Hoffmann 1 onpericyclic reactions, the section headed ‘ Violations ’ intermediates.begins with the sentence ‘ There are none! ’.Wood-ward and Hoffmann suggest that reactions in whichorbital symmetry is not conserved cannot take placeterms of alternative mechanisms involving biradicalIn an alternative theory of pericyclic reactions whichwas first proposed by Evans,2 the facility of the re-actions depends on the resonance stabilization of thevia a concerted pericyclic mechanism and they explainin 2 (a) M. G. Evans and E. Warhurst, Tram. Favaday Soc.,1938, 34, 614; ( b ) M. G. Evans, ibid., 1939, 35, 824; (c) M. J . S. apparent Of ‘ forbidden ’R. B. Woodward and R. Hoffmann, ‘ The Conservation of Dewar, Chem. s’oc.Special Publ., No. 21, The Chemical Sosety,London, 1967; (d) Angew. Chew. Internat. Edn., 1971, 10. 761. Orbital Symmetry,’ Academic Press, New York, 19701840 J.C.S. Perkin Icorresponding transition states. Reactions which followthe Woodward-Hoffmann rules have transition stateswhich are aromatic while reactions which violate therules have antiaromatic transition states. Reactions ofthe latter kind should have correspondingly highactivation energies and so occur correspondingly lessreadily; nevertheless they should be feasible and shouldindeed occur in cases where no better alternatives exist.This seems to be so in the ' forbidden ' electrocyclicconversion of Dewar benzene (1) into benzene (2) and ofthe bicyclopentene (3) into cyclopentadiene (4).Ineach case rearrangement via an intermediate biradical isruled out by steric considerations and MINDO/3calculations strongly suggest that both these reactions(I) ---t (2) and (3) + (4) do indeed involve con-certed antiaromatic pericyclic proce~ses.~The purpose of this paper is to point out an alternativeway in which the effects of antiaromaticity may beevaded, thus leading to the possibility of true pericyclicreactions violating the Woodward-Hoff mann rules.A pericyclic reaction involves a cyclic permutation ofbonds around a ring of atoms, the process being analogousto the conversion of one Kekul6 structure for a cyclicpolyene into the other, i.e. :The intermediate phases of such a reaction can thus berepresented by superpositions or hybrids of the initialand final structures.The resulting resonance energywill then be positive or negative, depending on whetherthe system in question is aromatic or antiaromatic, andthe magnitude of this resonance energy will be greater,the more evenly the structures are mixed. The effectsof aromaticity or antiaromaticity will therefore begreatest at a point midway between reactant andproduct.Now according to the Bell-Evans-Polanyi (BEP)P r i n ~ i p l e , ~ ~ the more exothermic a reaction, the lowerin general will be its activation energy and the nearerthe transition state will be to the reactants in structure.In the case of a very exothermic pericyclic reaction, theeffects of aromaticity and antiaromaticity on theAT.J . S. Dewar and S. Kirschner, unpublished work.See M. J. S. Dewar, 'The Molecular Orbital Theory of5 G. S. Hammond, J . Amer. Chern. SOC., 1956, 77, 334.M. J. S. Dewar, Discuss. Faraday SOC., 1947, 2, 261. ' (a) T. S. Stevens, Progr. Org. Chem., 1968, 7 , 48; (b) A. R.Lepley and A. G. Giumanini, ' Mechanisms of Molecular Migra-tions,' ed. B. S. Thyagarajan, Wiley, New York, 1971, vol. 3,p. 297.Organic Chemistry,' McGraw-Hill, New York, 1969.transition state should then be small because it will haveonly a small contribution from the product structure.The distinction between aromatic and antiaromaticpericyclic reactions should therefore diminish as thereactions become increasingly exothermic. Since, more-over, a very exothermic reaction should, according tothe BEP principle, have a correspondingly low activationenergy, one might expect very exothermic antiaromaticpericyclic reactions to occur quite readily.This thenwould represent an area where the Woodward-Hoffmannrules might break down quite generally.An interesting possible example of this kind is pro-vided by the Stevens rearrangement of nitrogen ylides(9) to tertiary amines (lo).' This reaction violates theWoodward-Hoffmann rules and if it were concerted,the corresponding pericyclic transition state (1 1) wouldbe isoconjugate with the cyclopropenyl anion (12) andso be antiaromatic. The reaction should also be veryexothermic because it involves a large decrease incharge separation and a corresponding large decreaseR R RA * Rqc -y- Me3N + - - CH,Me2N - C H2Me(15)in coulombic energy.Moreover, a reasonable alter-native non-concerted reaction path is available, byfission to a pair of radicals (13) which can recombine to(ll), and a number of experimental studies have beenrecently reported in which attempts were made todistinguish between these two mechanisms.Until recently no theoretical procedures were availablethat could give meaningful predictions for such a re-action. Ab ivtitio SCF MO methods, apart from doubtsconcerning their accuracy, would be far too expensivewhile all the available semiempirical methods wouldhave been suspect due to their tendency to overestimatethe stabilities of small rings. Recently, however, animproved version (MIND0/3) * of the MIND0 semi-empirical SCF MO method has been developed in theselaboratories which seems to avoid the systematic errorsinherent in MIND0/2 and MIND0/2'.1° Here wereport its application to the simplest known Stevensrearrangement, that of trimethylammonium methylide(14) to dimethylethylamine (15).In view of the current8 R. C. Bingham, I. J. S. Dewar, and D. H. Lo, unpublishedwork.S (a) M. J . S. Dewar and E. Haselbach, J . Amer. Chem. Soc.,1970, 92, 590; (b) N. Bodor, M. J. S. Dewar, A. Harget, and E.Haselbach, ibid., p. 3854.10 N. Bodor, M. J. S. Dewar, and D. H. Lo, J . Amer. Chem.SOC., 1972, 94, 53031974interest in ylides, we have also carried out calculationsfor a benzoyl derivative of (14).HL-C A w C! kH7 HeReaction co-ordinate : 8Symmetry conditions during optimization1 7 = 1 82 9 = 2 1 010 11 = 10 12 = 10 13 = 9 14 = 9 15 = 9 162 1 8 = 2 1 79 2 1 = 102 111 10 2 = 12 10 2 = 13 1 0 2 = 14 9 2 = 15 9 2 = 16 9 2- - - - - - - 7FIGURE 1 Reaction co-ordinate and symmetry conditions forthe Stevens rearrangement of trimethylammonium methylideto ethyldimethylamineTheoretical Procedztre.-The calculations were carriedout by the MINDO/3 procedure,8 details of which areStructure(a) Trimethylammonium methylideHC(b) Dimethylethylamine,H5HtC3-H6I1841the same value for an atom in a molecule as for thecorresponding free atom but rather is treated as aparameter and different values are used for 2s and 29AO’s.The 2 ’ s appear only in the calculations ofoverlap integrals, used in the Mulliken approximationfor the one-electron core resonance integrals.The geometries were calculated in all cases by mini-mizing the total energy, using the SIMPLEX method.In order to reduce the amount of computation in thecase of (14), symmetry conditions were assumed asindicated in Figure 1. The conversion of (14) into (15)was studied by using the H,C-N-CH, angle 8 (seeFigure 1) as reaction co-ordinate. For each value of 8 ,the energy was minimized with respect to all the otherco-ordinates, subject to the assumed symmetry con-ditions.RESULTSThe calculated geometries and heats of formation of (14)and (15) are shown in Figures 2a and b. The reaction ispredicted to be very exothermic (AH -363 kJ mol-l).Figure 3 shows a plot of the energy as a function of thereaction co-ordinate 0 (see Figure 1).This should corre-spond to the concerted conversion of (14) into (15) since thesingle determinant description used in MINDO/3 greatlyoverestimates bond dissociation energies and so cannot beBond length (A)- 12 = 1.471; B = 1.47934 = 1.115; 35 = 1-116B = 1-115; 17 =18 = 1.133T9 = T O = 1.499-AHf, 415.0 kJ mol-1- - 12 = 1.435; 13 = 1.49917 -18 = 1.130- 34 = 1.112; = 1.11236 = 1.112;29 = T O = 1.415cIAH,, 52.2 kJ mol-l- 12 = 1.452; 2 = 1.50334 = 1.138: 35 = 1.119 -Bond angles (”) Dihedral angles (”) *- - 1234 = 179.01235 = 59-11236 = 298.93218 = ‘ZB = 126.5 ZFZ = 10213 = 119.0- 123 = 105.1234 = 114.2EE = 113.1236 = 113.1217 = 218 = 109.8E 9 = 121O = 113.8-- 213 = 118.8134 = 117.0135 = 112.6- - - 136 = 112.6217 = 218 = 109.81T= 121O= 119.6123 = 80.0234 = 105.2 - - - ZE = 1.119; 235 = 119.029 = 310 = 1.489 236 = 119.717 = 18 = 1.128 - - - - 217 = 218 = 114.1129 = T E O = 117.1 -- - 1234 = 178.91235 = 67-4 - 1236 = 290.33218 = 7123 = 122-5 - - - 3129 = 10213 = 115.4(c) Transition state* Dihedral angle ijkl is defined as the angular displacement of the distance relative to the one measured anticlockwise alongthe direction j __t k .FIGURE 2 Calculated geometries (a) of (14); (b) of (15); and (c) of the pericyclic transition state for conversion of (14) into (15).being published elsewhere. This differs from the used to follow such processes e.g.(14) + Me,NCH,* +original version of MIND0/2 9 only in two respects. The reaction was followed in both directions, the C-H,.First, the one-centre integrals are estimated by aeffective nuclear charge (2) is no longer assumed to have11 (a) L. Oleari, L. Di Sipio, and G. De Michelis, Mol. Phys.,modification Of Oleari” method; l1 the 1966, 10, 97; (b) M. J. S. Dewar and D. H. Lo, J . Amer. Chem.SOC., 1972, 94, 52961842 J.C.S. Perkin Iforward and backward paths being identical. This suggeststhat 8 is a satisfactory reaction co-ordinate.12 The con-version of (14) into (15) is predicted to have a very lowactivation energy (17 kJ mol-l); the structure of thetransition state is shown in Figure 2c.1300 -cI E2 200-a100 -OllO d o 9b sb 70 6b 5b Lo 3b 20eldegreesFIGURE 3 Plot of the calculated heat of formation (AH) againstthe reaction co-ordinate 8 (Figure 1) for the pericyclic conver-sion of (14) into (15)5.04 ~ 0n' j 3 c Ed0 P6- 2.01 cc-- Transition state I l l0 100 90 80 70 60 50 40 30 20a /degreesFIGURE 4 Plot of the calculated dipole moment (p) us.0 for theThe arrow indicates the pericyclic conversion of (14) into (1 5).position of the transition stateFigure 4 shows the variation of dipole moment (p) duringthe reaction as a function of the reaction co-ordinate 0.The arrow indicates the position of the transition state.l2 M. J. S. Dewar and S. Kirschner, J . Amev. Chem.SOC., 1971,93, 4290, 4291, 4292.l3 U. Schollkopf, U. Ludwig, G. Ostermann, and 31. Patsch,Tetrahedron Letters, 1969, 3415.DISCUSSIOXThe results reported above obviously provide strongsupport for the suggestion that antiaromatic pericyclicreactions may occur very readily if they are sufficientlyexothermic. The calculated activation energy for con-version of (14) into (15) in the gas phase is extremelysmall (17 kJ mol-l) although this is an antiaromaticprocess violating the Woodward-Hoffmann rules.l7hile the Stevens rearrangement was chosen simplyas a convenient example of an extremely exothermicreaction that could take place by an antiaromaticpericyclic pathway, it is also of interest in view ofcurrent controversy concerning its mechanism.Theobservation of the CIDNP effect during a number ofStevens rearrangements has led to the suggestion thatthe reactions may not in fact be pericyclic but takeplace by fission to an intermediate pair of radicals(S) (13) which then recombine inside a solventcage.13914 This evidence certainly shows that at leastsome of the product must have been formed by re-combination of radicals but does not establish this asthe main reaction path. The CIDNP effect is sosensitive that large signals can be obtained in caseswhere only a few percent of product are formed viaradicals.The calculations reported here suggest that theStevens rearrangement may very well take place by aconcerted pericyclic path but does not allow a distinctionbetween this and the radical pair mechanism.In thecase of (14), MINDO/3 predicts dissociation to radicals(Me,NCH,* + CH,) to be exothermic (AH, - 42 kJmol-l). In the gas phase (14) should then dissociatewithout activation. In practice, however, the Stevensrearrangement is carried out in polar solvents where theheat of solvation of the zwitterionic ylide may well be125-175 kJ mol-l. Most of this solvation energy willbe lost on forming the pair of weakly polar rzdicals andthe energy required for their formation will be corre-spondingly increased. On the other hand the transitionstate for the pericyclic reaction, while less polar than theylide, should still be strongly polar since it should benearer to the reactant ylide than to the product instructure.The increase in activation energy on passingfrom the gas phase to a polar solvent should then bemuch less than that for fission to radicals. Our calcu-lations do indeed indicate that the transition state forthe conversion of (14) into (15) (see Figure 2) is muchcloser to (14) than to (15) in structure and Figure 4shows that its calculated dipole moment (2-5 D), whileless than that of (14) (4.0 D), is still large. The peri-cyclic path could therefore very well be favoured for thereaction of (14) in polar solvents.Little is known concerning the conversion of (14)into (15). Wittig and Polster reported the preparationof (14) by treating tetramethylammonium bromide withphenyl-1ithi~m.l~ The product was, however, isolated14 R.W. Jemison, S. Mageswaran, W. D. Ollis, S. E. Potter,A. J . Pretty, I. 0. Sutherland, and Y. Thebtaranonth, Chem.Comm., 1970, 1201.15 G. Wittig and R. Polster, Anitale??, 1956, 599, 1 1974 1843as a complex with lithium bromide and may have beenan alkyl-lithium derivative, LiCH,NMe,Br-. When amixture of phenyl-lithium and phenylsodium was used,the ylide decomposed giving (15) in 49 yield.l6 In astudy of the decomposition of tetramethylammoniumfluoride by potassium amide, Musker found that (15) wasformed in 5-10 yie1d.l'The majorit!. of Stevens rearrangements reported inthe literature have involved ylides stabilized by +Esubstituents, usually acyl. We have not studied such aprocess because the molecules in question are ratherlarge and the cost of following their rearrangements bythe SIMPLEX method would be excessive.It has beenreported that Stevens rearrangement of the ylide (16)to (17) in chloroform takes place with 95 retention ofconfiguration.18 The high degree of stereospecificitycertainly seems to suggest that at least a large part ofthe reaction may have taken place by the pericyclicroute.+H Ph I + IMe Me2N- CH - COPhPh - C- N Me2- CH COPh Me- C- HI I(16) (17)'CH co P h ' c HCOPh( 1 8 ) (19)The bonding in nitrogen ylides is of interest in view ofthe large separation of charge in them and because thestructures of the stable ylides (l8) and (19) haverecently been determined by X-ray crysta110graphy.l~For comparison we have calculated the structure of thebenzoyl derivative (20) of (14).The calculated structureis shown in Figure 5 together with the measured lengthsof corresponding bonds in (18) and (19). In order toreduce the amount of computation, the benzene ring in(20) was assumed to have the structure calculated(MIND0/3) for benzene. Note that the predictedlength of the CH-CO bond in (20) is much greater, andthat of the C-0 bond much less, than the measuredlength of corresponding bonds in (18) or (19). Evidentlythe negative charge is much more strongly localized onthe ylide CH in our calculated structure than in (18)or (19), the latter approximating closely to enolates(EN-CH=C-0). Likewise we predict the N-C bond tobe shorter in (20) than the corresponding bonds in (18)or (19), as would be expected if the carbon atom carries+.I - f -l6 G. Wittig and D. Krauss, Annale?z, 1964, 679, 34.l7 W. I<. Musker, J . Org. Chem., 1967, 32, 3189.l8 J. H. Brcwster and 31. W. Kline, J . Amer. Chem. SOC., 1952,74, 5179.a large negative charge. Our calculations of courserefer to an isolated molecule in the gas phase where theE? = 1.467 (1.48; 1.47)23 = 1.417 (1.36; 1.34)S = 1.234 (1.27; 1.30) = 1.543 (1.52; 1-51)-25 = 1.109- 123 = 129.2 (119.0; 123.0)234 - = 123.0523 = 121.5 - 1234 = 0.15234 = 180.0 -FIGURE 5 Calculated bond lengths (z) (A) and bond angles ( r 7 )(") in (20). The first value in parentheses is the observed valuefor the corresponding bond or angle in (18), the second for thatin (19)energy of the enolate structure would be increased bythe large separation of charge in it (cf.EN-CH- with=N-CH=C-0). The ylide molecules in a crystal of ylideare in a highly polar environment where the effect ofcharge separation must be much less than in the gasphase.A rough estimate of the electrostatic energy due tocharge separation can be made by considering thechange in energy when an ylide is formed by union of anammonium ion with an anion :f -- + I -- f - -H + H-C< + -N-C< + H,The change in energy (AE) can be written in terms ofbond energies (EX=) and the electrostatic energy (E+) :(1)AE = E N H + ECH - ECN - E H H + E+- ( 2 )If bond energies followed an arithmetic mean rule, thebond energy of an XY bond being the mean of the bondenergies of XX and YY, the bond energy term ( E N H +EcH - E O N - E m ) in equation (2) would vanish.Itsactual value can therefore be estimated by usingPauling's rule 2o for deviations from the arithmeticmean, i.e.E~~ = o . ~ ( E ~ ~ +- E ~ ~ ) + (ax - ap)2 (3)where ax and ap are the electronegativities of X and Y.Using the electronegativity values suggested by Jolly,21we estimate the value of the bond energy term inequation (2) to be cn. 0.25 eV.l9 N. A. Bailey, S. E. Hull, G. F. Kersting, and J . Morrison,2o L. Pauling, ' The Nature of the Chemical Bond,' 3rd edn.21 W. L. Jolly, J . -4mer. Chem. SOG., 1970, 92, 3260.Chem. Comm., 1971, 1429.Cornell University Press, Ithaca, New York, 19601844 J.C.S. Perkin IThe Table shows total energies for the various speciesUsing these and equations calculated using MIND0/3.Total energies of various species calculated by MINDO/3Species +Me,N-HCH,-PhCOCH,H 2Me,N-CH+ -Electronicenergy (eV)- 712.87- 168.59- 1427.87- 31.72- 858.01Me,HCOPh -2115.11(2) and (3) we arrive at the following estimates of theelectrostatic energies E+- in (14) and (20) : (14) E+- =8-0 eV (770 kJ mol-l), (20) E+- = 6.1 eV (590 kJ mol-l).The electrostatic energies are both very large and thatfor (20) is significantly less than that for (14). Onewould of course expect the electrostatic energies to belarge since both compounds, according to simple valencetheory, are zwitterionic. One would also expect theelectrostatic energy to be less for (20) than for (14)because in (20) the negative charge is dispersed over theenolate system. The mean distance between thepositive and negative charges is consequently greaterthan it is in (14) and the electrostatic energy (-e2/r)correspondingly less.This work was supported by the Air Force Office ofScientific Research and by the Robert A. Welch Foundation.3/1671 Received, 7th August, 1973
机译:1974 1839史蒂文斯重排:一种反芳香族周环反应?作者:Michael J. S. Dewar 和 Christopher A. Ramsden,德克萨斯大学化学系,德克萨斯州奥斯汀 7871 2,美国德克萨斯州奥斯汀 7871 2 讨论了伍德沃德-霍夫曼规则在非常放热的反应中可能相当普遍地失效的可能性。MIND0/3 对史蒂文斯重排的周环机制的计算支持这种可能性。尽管根据伍德沃德-霍夫曼规则,史蒂文斯重排的协同机制被正式“禁止”,但计算出的活化能非常小(1 7 kJ mol-l)。报道了苯甲酰基稳定氮酰化物的计算结构,并估计了酰化物的静电能。在伍德沃德和霍夫曼的经典文章中 1 环反应,标题为“违规”中间体的部分以“没有!’.Wood-ward 和 Hoffmann 认为轨道对称性不守恒的反应不能发生涉及双自由基的替代机制在埃文斯首次提出的环环反应的替代理论中,2 再作用的便利性取决于通过的共振稳定,这是一种协调的周环机制,他们解释了 2 (a) M. G. Evans 和 E. Warhurst, 电车。Favaday Soc.,1938, 34, 614;( b ) M. G. Evans, 同上, 1939, 35, 824;(c) M. J.S. 明显的 ' 禁止 'R. B. Woodward 和 R.霍夫曼,“杜瓦瓶的守恒”,Chem.Special Publ., No. 21, The Chemical Sosety, 伦敦, 1967;(d) 安格。咀嚼%。国际。Edn., 1971, 10.761. Orbital Symmetry,'Academic Press,纽约,19701840 J.C.S. Perkin I相应的过渡态。遵循伍德沃德-霍夫曼规则的反应具有芳香族的过渡态,而违反该规则的反应具有反芳香族过渡态。后一种反应应具有相应的高活化能,因此相应地不太容易发生;然而,它们应该是可行的,并且确实应该在没有更好的选择的情况下发生。在杜瓦苯(1)到苯(2)和双环戊烯(3)到环戊二烯(4)的“禁止”电环转化中,似乎就是这样。在每种情况下,通过中间双自由基重排都被空间考虑排除在外,MINDO/3 的计算强烈表明这两种反应 [(I) ---t (2) 和 (3) + (4)] 确实涉及经认证的反芳香环过程~ses.~本文的目的是指出一种替代方法,在这种方式中,反芳香性的影响可能会消失,从而导致真正的环反应违反伍德沃德-霍夫曼规则的可能性.周环反应涉及围绕原子环的键的循环排列,该过程类似于环多烯的一个 Kekul6 结构转化为另一个,即: 因此,这种反应的中间阶段可以用初始结构和最终结构的叠加或杂化来表示。由此产生的共振能量将是正的还是负的,这取决于所讨论的系统是芳香族还是反芳香族,并且这种共振能量的大小会更大,结构混合得越均匀。因此,芳香性或反芳香性的影响在反应物和产物之间的中间点上最大。现在根据贝尔-埃文斯-波兰尼 (BEP)P r i n ~ i p l e , ~ ~ 反应的放热程度越高,其活化能一般越低,结构上与反应物的过渡态越接近。在非常放热的周环反应的情况下,芳香性和反芳香性对AT.J的影响。S. Dewar 和 S. Kirschner,未发表的作品。参见 M. J. S. Dewar, 'The Molecular Orbital Theory of5 G. S. Hammond, J .陈晌。SOC., 1956, 77, 334.M. J. S. Dewar, 讨论.法拉第SOC.,1947,2,261。' (a) T. S. Stevens, Progr.化学, 1968, 7 , 48;(b) A. R.Lepley 和 A. G. Giumanini, 'Mechanisms of Molecular Migra-tions', ed. B. S. Thyagarajan, Wiley, New York, 1971, vol. 3,p. 297.Organic Chemistry,' McGraw-Hill, New York, 1969.过渡态应该很小,因为它对产物结构的贡献很小。因此,芳香族和反芳香族周环反应之间的区别应该随着放热程度的增加而减少。此外,由于根据BEP原理,非常放热的反应应该具有相应的低活化能,因此人们可能会期望非常放热的反芳香环反应很容易发生。那么,这将代表伍德沃德-霍夫曼规则可能相当普遍地崩溃的领域。一个有趣的例子是史蒂文斯将氮酰化物(9)重排为叔胺(lo)。该反应违反了伍德沃德-霍夫曼规则,如果它协同作用,相应的环环过渡态 (1 1) 将与环丙烯基阴离子 (12) 同轭,因此是反芳香族的。该反应也应该是非常放热的,因为它涉及大量减少的电荷分离和相应的大量减少R R RA * Rqc -y- Me3N + - - CH,Me2N - C H2Me(15) 在库仑能量中。此外,通过裂变到一对可以重组为(ll)的自由基(13),可以获得合理的改变天然非协同反应路径,并且最近报道了许多实验研究,其中试图区分这两种机制。直到最近,还没有理论程序可以对这种重新行动做出有意义的预测。除了对其准确性的怀疑之外,Ab ivtitio SCF MO方法将过于昂贵,而所有可用的半经验方法都会受到怀疑,因为它们倾向于高估小环的稳定性。然而,最近,这些实验室开发了 MIND0 半经验 SCF MO 方法的改进版本 (MIND0/3) *,该方法似乎避免了 MIND0/2 和 MIND0/2'.1° 中固有的系统误差。鉴于目前 8 R. C. Bingham, &I. J. S. Dewar, and D. H. Lo, 未发表的著作。S (a) M. J .S. 杜瓦和 E. 哈塞尔巴赫,J .美国化学学会,1970, 92, 590;(b) N. Bodor, M. J. S. Dewar, A. Harget, and E.Haselbach, 同上, p. 3854.10 N. Bodor, M. J. S. Dewar, and D. H. Lo, J.Amer. Chem.SOC., 1972, 94, 53031974对酰化物感兴趣,我们还对(14)的苯甲酰衍生物进行了计算。HL-C A w C!kH7 He反应坐标 : 8优化过程中的对称条件1 7 = 1 82 9 = 2 1 010 11 = 10 12 = 10 13 = 9 14 = 9 15 = 9 162 1 8 = 2 1 79 2 1 = 102 111 10 2 = 12 10 2 = 13 1 0 2 = 14 9 2 = 15 9 2 = 16 9 2- - - - - - - - - - - --计算由MINDO/3程序进行,8其细节是结构(a)三甲基甲基化铵HC(b)二甲基乙胺,H5HtC3-H6I1841分子中原子的值与相应的自由原子的值相同,但被视为参数,2s和29AO使用不同的值。2 的 只出现在重叠积分的计算中,用于单电子核共振积分的 Mulliken 近似。在所有情况下,几何形状都是通过使用SIMPLEX方法最小化总能量来计算的。为了减少(14)情况下的计算量,假设对称条件如图1所示。以H,C-N-CH,角8(见图1)为反应坐标,研究了(14)到(15)的转化。对于每个值 8 ,能量相对于所有其他坐标最小化,但受假定的对称条件的约束。结果计算出的(14)和(15)的几何形状和形成热如图2a和b所示。预计该反应非常放热 (AH -363 kJ mol-l)。图 3 显示了能量随作用坐标 0 的函数关系图(见图 1)。这应该与(14)到(15)的协同转换相对应,因为MINDO/3中使用的单一行列式描述大大高估了键解离能,因此不能键长(A)- 12 = 1.471;B = 1.47934 = 1.115;35 = 1-116B = 1-115;17 =18 = 1.133T9 = T O = 1。499-AHf,415.0 kJ mol-1- - 12 = 1.435;13 = 1.49917 -18 = 1.130- 34 = 1.112;= 1.11236 = 1.112;29 = T O = 1.415cIAH,, 52.2 kJ mol-l- 12 = 1.452;2 = 1.50334 = 1.138: 35 = 1.119 -键角 (“) 二面角 (”) *- - 1234 = 179.01235 = 59-11236 = 298.93218 = 'ZB = 126.5 ZFZ = 10213 = 119.0- 123 = 105.1234 = 114.2EE = 113.1236 = 113.1217 = 218 = 109.8E 9 = 121O = 113.8-- 213 = 118.8134 = 117.0135 = 112.6- - - 136 = 112.6217 = 218 = 109.81T= 121O= 119.6123 = 80.0234 = 105.2 - - - ZE = 1.119;235 = 119.029 = 310 = 1.489 236 = 119.717 = 18 = 1.128 - - - - 217 = 218 = 114.1129 = T E O = 117.1 -- - 1234 = 178.91235 = 67-4 - 1236 = 290.33218 = 7123 = 122-5 - - - 3129 = 10213 = 115.4(c) 过渡状态* 二面角 ijkl 定义为相对于沿 j __t k 方向逆时针测量的距离的角位移。图 2 计算几何形状 (a) of (14);(b)第(15)项;(c)将(14)转化为(15)的环状过渡态,已在其他地方发表。这与用于遵循此类过程的 [例如 (14) + Me,NCH,* + MIND0/2 9 的原始版本仅在两个方面不同。反应在两个方向上都遵循,即 C-H,]。首先,用有效核电荷(2)估计单中心积分,不再假设有11 (a) L. Oleari, L. Di Sipio, and G. De Michelis, Mol. Phys.,modification Of Oleari“方法;L1 1966年,10年,97年;(b) M. J. S. Dewar 和 D. H. Lo, J .Amer. Chem.SOC., 1972, 94, 52961842 J.C.S.Perkin I前进和后退路径相同。12 (14)与(15)的转化预计具有非常低的活化能(17 kJ mol-l);过渡态的结构如图2c.1300 -cI E2 200-a100 -OllO d o 9b sb 70 6b 5b Lo 3b 20eldegrees图3 (14)到(15)5.04~0n' j 3 c Ed0 P6- 2.01 cc-- 过渡态 I l l0 100 90 80 70 60 50 40 30 20a /度图4 计算出的偶极矩(p)us.0的曲线箭头表示(14)到(1 5)的环环转换图4显示了反应过程中偶极矩(p)的变化作为反应坐标的函数0.箭头表示过渡态的位置.l2 M. J. S. Dewar 和 S. Kirschner, J .阿梅夫。Chem.SOC., 1971,93, 4290, 4291, 4292.l3 U. Schollkopf, U. Ludwig, G. Ostermann, and 31.Patsch,Tetrahedron Letters, 1969, 3415.DISCUSSIOX上述结果显然为以下观点提供了强有力的支持:如果反芳香族周环反应足够放热,则很容易发生。在气相中,(14)与(15)的转化计算活化能非常小(17 kJ mol-l),尽管这是一个违反伍德沃德-霍夫曼规则的反芳烃过程。l%7hile Stevens重排被选为反芳香环环途径可能发生的极端放热反应的一个方便的例子,鉴于目前关于其机制的争议,它也很有趣。在许多史蒂文斯重排过程中对CIDNP效应的观察导致了这样的建议,即反应实际上可能不是环环反应,而是通过裂变到中间对自由基[(S)(13)],然后在溶剂笼内重新组合而发生.13914这一证据无疑表明,至少一些产物必须是由自由基的重新组合形成的,但并没有将其确定为主要的反应路径。CIDNP效应非常敏感,以至于在只有百分之几的产物通过自由基形成的情况下,可以获得大信号。这里报告的计算表明,史蒂文斯重排很可能是通过协同的周环路径发生的,但不允许区分这与自由基对机制。在(14)的情况下,MINDO/3预测解离为自由基(Me,NCH,* + CH,)是放热的(AH,-42 kJmol-l)。在气相(14)中应解离而不活化。然而,在实践中,史蒂文斯重排是在极性溶剂中进行的,其中两性离子酰化物的溶剂化热很可能为125-175 kJ mol-l。在形成一对弱极性 rzdicals 时,大部分溶剂化能将损失,并且形成它们所需的能量将相应增加。另一方面,环环反应的过渡态虽然极性不如它们,但仍然应该是强极性的,因为它应该更接近反应物酰化物而不是产物结构。从气相传递到极性溶剂时活化能的增加应该远小于裂变为自由基的活化能。我们的计算确实表明,(14)转化为(15)的过渡态(见图2)在结构上更接近(14)而不是(15),图4显示其计算出的偶极矩(2-5 D)虽然小于(14)(4.0 D),但仍然很大。因此,环周路径很可能有利于(14)在极性溶剂中的作用。关于(14)到(15)的转换知之甚少。Wittig 和 Polster 报道了通过用苯基-1ithi~m.l~ 处理四甲基溴化铵来制备 (14) 然而,该产物被分离出来14 R.W. Jemison, S. Mageswaran, W. D. Ollis, S. E. Potter,A. J .漂亮,I. 0。Sutherland, and Y. Thebtaranonth, Chem.Comm., 1970, 1201.15 G. Wittig and R. Polster, Anitale??, 1956, 599, 1 1974 1843作为与溴化锂的络合物,可能具有宾聚糖烷基锂衍生物,LiCH,NMe,Br-。当使用苯基锂和苯钠的混合物时,酰化物分解得到(15)的收率为49%。l6 在对酰胺钾分解四甲基氟化铵的研究中,Musker 发现 (15) 形成于 5-10% yie1d.l'The majorit!.文献中报道的史蒂文斯重排涉及由+取代基(通常是酰基)稳定的基化物。我们没有研究过这样的过程,因为所讨论的分子相当大,并且通过SIMPLEX方法重新排列它们的成本会过高。据报道,氯仿中酰化物(16)至(17)的史蒂文斯重排发生,保留了95%的构型.18高度的立体特异性似乎表明,至少很大一部分反应可能是由环环路线发生的.+H Ph I + IMe Me2N- CH - COPhPh - C- N Me2- CH COPh Me- C- HI I(16) (17)'CH co P h ' c HCOPh( 1 8 ) (19)氮酰化物中的键合鉴于它们中的电荷分离很大,并且由于稳定基化物[(l8)和(19)]的结构最近已通过X射线crysta110graphy.l~为了进行比较,我们计算了(14)的苯甲酰衍生物(20)的结构。计算出的结构如图5所示,以及(18)和(19)中相应键的测量长度。为了减少计算量,假设苯环in(20)计算了苯的结构(MIND0/3)。请注意,与(18)或(19)中相应键的测量长度相比,(20)中CH-CO键的预测长度要大得多,而C-0键的预测长度要小得多。显然,在我们计算的结构中,负电荷比(18)或(19)更强地局限于ylide CH,后者非常接近烯醇化物(EN-CH=C-0)。同样,我们预测 (20) 中的 N-C 键比 (18)或 (19) 中的相应键短,正如碳原子携带 + 时所预期的那样。I - f -l6 G. Wittig 和 D. Krauss, Annale?z, 1964, 679, 34.l7 W. I<.马斯克,J .Org. Chem., 1967, 32, 3189.l8 J. H. Brcwster 和 31.W.克莱恩,J .Amer. Chem. SOC., 1952,74, 5179.a大负电荷.我们的计算当然是指气相中的孤立分子,其中E?= 1.467 (1.48; 1.47)23 = 1.417 (1.36; 1.34)S = 1.234 (1.27; 1.30)% = 1.543 (1.52; 1-51)-25 = 1.109- 123 = 129.2 (119.0; 123.0)234 - = 123.0523 = 121.5 - 1234 = 0.15234 = 180.0 -图 5 计算的键长 (z) (A) 和键角 ( r 7 )(“) 在 (20) 中。括号中的第一个值是(18)中相应键或角度的观测值,第二个值是(19)中烯醇结构的能量将因其中电荷的大分离而增加(cf.EN-CH- 与=N-CH=C-0)。ylideare晶体中的酰化物分子在高极性环境中,电荷分离的影响必须远小于气相。通过考虑铵离子与阴离子结合形成亚化物时的能量变化,可以粗略估计电荷分离引起的静电能:f -- + I -- f - &-H + H-C< + -N-C< + H,能量的变化 (AE) 可以用键能 (EX=) 和静电能 (E+) :(1)AE = E N H + ECH - ECN - E H H + E+- ( 2 )如果键能遵循算术平均值规则,XY键的键能是XX和YY键能的平均值,等式(2)中的键能项( E N H +EcH - E O N - E m )将消失。因此,它的实际值可以通过使用鲍林规则 2o 来估计与算术平均值的偏差,即 E~~ = o 。~ ( E ~ ~ +- E ~ ~ ) + (ax - ap)2 (3)其中 ax 和 ap 是 X 和 Y 的电负性,21 我们估计键能项等式 (2) 的值为 cn.0.25 eV.l9 N. A. Bailey, S. E. Hull, G. F. Kersting, and J .Morrison,2o L. Pauling,“化学键的性质”,第 3 版.21 W. L. Jolly, J .-4mer. Chem. SOG., 1970, 92, 3260.Chem. Comm., 1971, 1429.Cornell University Press, Ithaca, New York, 19601844 J.C.S. Perkin 表格显示了各种物种的总能量使用这些和使用 MIND0/3 计算的方程式.MINDO/3 计算的各种物种的总能量 +Me,N-HCH,-PhCOCH,H 2Me,N-CH+ -电子能 (eV)- 712.87- 168.59- 1427.87- 31.72- 858.01Me,&HCOPh-2115。11(2)和(3)我们得出以下静电能E+-的估计值(14)和(20):(14)E+-=8-0eV(770 kJ mol-l),(20)E+-=6.1 eV(590 kJ mol-l)。静电能量都非常大,并且(20)的静电能量明显小于(14)的静电能量。人们当然会期望静电能变大,因为根据简单的价理论,这两种化合物都是两性离子的。人们还期望(20)的静电能量小于(14),因为在(20)中,负电荷分散在烯醇酸盐系统上。因此,正电荷和负电荷之间的平均距离大于(14)中的平均距离,静电能(-e2/r)相应地小于。这项工作得到了空军科学研究办公室和罗伯特·韦尔奇基金会的支持。[3/1671 收稿日期:1973年8月7日

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号