首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Asymmetric syntheses. Part IX. Reduction of ketone oximes and theirO-substituted derivatives with the lithium aluminium hydride–3-O-benzyl-1,2-O-cyclohexylidene-α-D-glucofuranose complex to give optically active amines
【24h】

Asymmetric syntheses. Part IX. Reduction of ketone oximes and theirO-substituted derivatives with the lithium aluminium hydride–3-O-benzyl-1,2-O-cyclohexylidene-α-D-glucofuranose complex to give optically active amines

机译:不对称合成。第九部分.用氢化铝锂-3-O-苄基-1,2-O-环己亚基-α-D-呋喃葡萄糖络合物还原酮肟及其O-取代衍生物,得到具有光学活性的胺

获取原文
获取外文期刊封面目录资料

摘要

1902 J.C.S. Perkin IAsymmetric Syntheses. Part IX. Reduction of Ketone Oximes and theirO-Substituted Derivatives with the Lithium Aluminium Hydride-3-0-Benzyl-I ,2-~-cyc~ohexy~idene-a-D-gfucofuranose Complex to give Optic-ally Active AminesBy Stephen R. Landor,'t Oluntunji 0. Sonola, and Austin R. Tatchell, Makerere University, Kampala, andThe asymmetric reduction of ketone oximes and their O-tetrahydropyranyl and O-methyl derivatives with thelithium aluminium hydride-3-O-benzyl-l.2-O-cyclohexylidene-ct-D-glucofuranose complex yields optically activeamines of up to 56 optical purity. The stereoselectivities obtained from reduction of the O-substituted oximeswere similar to those from the reduction of the free oximes. All the resulting amines have the S-configurationand this method may be used in determining the absolute configurations of amines.Asymmetric reductionwith the ethanol-modified glucofuranose complex gives optically active amines of the R-configuration.Thames Polytechnic, London SE18IN Parts 1-111 2-4 we reported the asymmetric re-duction of ketones by lithium aluminium hydride-mono-saccharide complexes to give optically active alcoholswith up to 70 stereoselectivity. We have nowextended these investigations to the reduction of theamines. Here the essential mechanistic step is similarto that in the case of the carbonyl group, which mustinvolve a kinetically controlled hydride transfer inwhich the sterically least hindered transition state pre-dominates. Thus the formation of optically activeamines depends on the fact that the free energies ofactivation corresponding to the approach of the hydridecomplex to either side of the carbon-nitrogen doublebond .must be different, leading to the formation of thetwo enantiomers (R and S) in unequal amounts; thegreater the steric differences and therefore the differ-ences in activation energies, the higher the stereo-selectivity obtained .Although the multiple bonds of the carbonyl andoxime groups are similar, the free oxime possesses anadditional hydroxy-group which reacts with the alu-reduction must proceed by an intermolecular hydridetransfer preferentially of HB from a second molecule ofisoelectronic imino-group and obtained optically active ---cH NH2--c ' c /HR2= HAL C1#12L06 , OMe, or minium hydride-monosaccharide reducing complex,hydrogen being evolved.Based on the evidence3P4 0 0reported previously it may be assumed that the hydrogenatom replaced in this reaction is predominantly Hg.However coplanarity of the Al, 0, N, and C atoms in thecomplex (I) thus formed renders intramolecular transferof HA to the oxime carbon atom sterically improbableand energetically unfavourable. Hence the asymmetrict Present address : Department of Chemistry, Exeter Univer-sity, Exeter EX4 4QD.Part VIII, S. R. Landor, B. J. Miller, J. P. Regan, and A. R.Tatchell, J.C.S. Perkin I , 1974, 557. * S. R. Landor, B. J. Miller, and A. R. Tatchell, J . Chem. SOC.(C), (a) 1966, 1822; ( b ) 1966, 2280; (c) 1967, 197.SCHEMEaluminium hydride-monosaccharide complex (11) to thecarbon atom of the oxime group in (I), and this wouldbe predicted to give optically active amines of theS-configuration (see Scheme).This was found to be the case.Ten examples,including both alkyl and aryl ketone oxirnes (Tables 1and 2), all gave optically active amines of the S-con-figuration. The three amines for which the configurationhad not been previously established have now beenassigned the S-configuration.The asymmetric reductions of oximes and theirO-methyl and O-tetrahydropyranyl derivatives all pro-ceeded with similar stereoselectivities (Table 3) aswould be expected if a common mechanism involving asecond molecule of reducing agent was operative. TheO-substituent on the oxime is evidently too remote to3 S.R. Landor, A. R. Tatchell, and R. H. Williams, un-published work.Y . M. Chan, S. I70. t Yields of amine ca.8 B.p. 160" a t 11 mmHg.60.I Rotations for methanolic solutions (c 12.6).b B.p. 100" at 35 mmHg. c B.p. 70" at 6 mmHg. d B.p. 138" a t 1 mmHg.TABLE 2Reduction of aliphatic ketone oximes with the glucofuranose complexKetone: Ethyl Methyl Isopropyl Butyl Isobutyl Methyl Hexyl Cyclohexylmethyl P'OPYl methyl methyl methyl t-butyl methyl methylketone ketone ketone ketone ketone ketnne ketone ketoneAmine : s-Butyl- 1-Methpl- 1,S-Dimethyl- l-Methyl- 1,3-Dimethyl- 1,2,2-Trimethyl- l-Methyl- l-Cyclohexylbutylamine *b propylamine * e pentylamine *d butylamine *e propylamine *I heptylamine *I ethylamine ** amine *a 0,' 0 ' LiAlH, I 0(moll aln 20 e.e. aD 20 4 .t ctlD 20 e.e.t a D e.e. 20 e.e. aD 20 e.e.t aD 20 e.e.0.012 +0*41 5.6 +0-27 +0*15 +0*18 4.2 +0.19 4.5 +0*18 +041 9.20.018 +0*60 6.73 +0-61 + 0.42 +0.64 12-5 +0*40 9.5 +0*67 +0-93 14.10.025 +0*66 8.96 +0*79 + 0.65 +0*90 21.00 +0*82 19.5 +0*95 +lea2 21.40.032 +1*1 14.60 f0.76 + 0.76 +0*96 21.80 +0-74 17.5 +0.91 +149 24.000.039 +0*58 7.84 +0*56 + 0.72 3.0.88 20.40 +043 12.5 +0.70 +1-43 21-600.046 +0*43 6.83 +0.48 + 0.48 1-0.82 19.00 +0.46 10.90 +0-66 +0*77 11-608 B.p.Yield of amine > 70.B.p. 63" at 76 cm Hg.t The specific rotation has not been reported previously.B.p. 92-94" a t 76 cm Hg. C B.p. 86" at 76 cm Hg. B.p. 320" at 76 cin Hg.Hg. I B.p. 102" a t 76 cm Hg. 0 B.p.70" at 26 mmHg. hB.p. 58" a t 12 mmHg..ID eo e.e.+0-60 18-8+0.90 27.2+1*56 48.8+1*82 66.2 + 1-59 50.2+1.44 46.8101" a t 76 cmTABLE 3Comparative results from the reduction of ketones, ketone oximes, and O-tetrahydropyranyl and O-methyl derivativesof the latterR1R2C=X x = o X = NOH X = NOThD * X = NOMe7 R1,MeE tMePhMeMeMeMeMeMeMeMeMe- R*PhPhPhCH,PhCH,EtPriPrBuButBut1 -GoH 7*76 e.e.33 (-)-(S) 238 (-)-(S) 24.8 (-)-(S) '3.0 ( + ) - ( S )6.1 (+)-(S)7.2 (+)-(S)8.6; 10.6' (+)-(S)18.3; 30 * (+)-(S)7.8; 3.0 (+)-(S)11.4 (+)-(S) '76 (+)-(S) ' tThp = tetrahydropyranyl. a D Z o- 3.1- 2.84 7.56- 3-05 - 7-56 + 1.1 + 0-79 + 0.76 + 0.95 + 0.82 + 0.95 + 1.59 + 1-82SSSSS sST$ +SstSS7 yo e.e.10.714.121.224.89.614.621.819.524.0056.2alD20 - 1-43 - 3.27- 3.12- 9.13+ 7.8+ 1-66 + 0.86+0.79 + 1.06 + 0.78 + 1.22 + 1.78 + 1.60yo e.c.3-5816.522.026.611.320-924.318.626.849.8aD2' - 6.1- 3.61 + 6.6- 3.32 - 10.1 + 1.33+ 0-96 + 0.77+ 1.43 + 1-41t Configurational assignment on the basis of the present work.yo e.e.12.818-018.027.213.818-0023.018.422.644.0differences in steric bulk between the alkyl substituents.For alkyl aryl systems, electronic as well as steric factorsdetermine the stereoselectivities, as shown by the factthat maximum stereoselectivity was shown by deoxy-benzoin oxime and not by methyl naphthyl ketone oxime,Maximum stereoselectivities were again obtained (cj.refs. 2 and 3) with ca.1 : 1 molar ratios of lithiumaluminium hydride to monosaccharide. A comparisonof the results from the reduction of oximes with thosepreviously obtained for ketones (Table 3) shows that thJ.C.S. Perkin Ia,20 -80.8"; l3 (S)-isobutylamine. aID20 + 7.4" 1A (1-methylbutylamine 1,2-dimethylpropylarnine, and 1,2, 2-tri-methylpropylamine, specific rotations not reported) ; (S)- 1-methylpentylamiue, aID2' +4-3" ; 99 l5 (S)-1,3-dimethyl-butylamine, aJD19 +4.2 : (MeOH) ; l6 (S)-l-methylheptyl-amine, aID2O 4- 6.63" ; l1 (S)- 1-cyclohexylethylamine, aID15and their O-Methyl6 andO-Tetrahydropyranyl Derivatives.6-(a) With the lithiumaluminium hydride-3-O- benzyl- 1,2-0-cyclo hexylidene-a+-glucofuranose coinplex.A solution of the glucofuranose 1(8.8 g , 0.025 mol) in dry ether (50 ml) was added t o a+ 3.2" Jh 17Reduction of KetofLe Oximesstereoselectivities for alkyl aryl ketone oximes werelower than for the corresponding ketones, but were onaverage higher for dialkyl ketone oximes than for dialkylketones (a notable exception is cyclohexyl methylketone).Asymmetric reductions of ketone oximes and theirO-substi tut ed derivatives with the et hanol-modifiedcomplex (111) gave amines of the R-configuration; thisobservation lends support to the proposed mechanisticscheme. Evidently the ethoxy-group replaces HB andreduction may only be effected by HA, leading to theTABLE 4Ethanol-modified reduction of ketone oximes and O-substituted derivatives with the glucofuranose complexPhMeC=NOH PhMeeNOThp PhMeGNOMe PhCH,(Me)CTNOH EtMeC=NOHPrimary amine Primary amine b Primary amine b Primary amine b Primary amine *-.a m a a D 20 e.e.0 s x a m a0.012 - 3.0 10.3 +1.17 3.3 +0.24 3.20.020 +3*0 10-3 +2*41 8.3 +2*67 9-2 +1*92 5.4 -0.36 4.90.026 +b*O 17-4 +3.32 11.5 +347 12.3 - 2.90 8.2 -0.95 13.80.032 +5-12 17.8 +3*68 12.7 +5.36 18.5 -4.84 13.6 - 0.61 8-30.039 + 2.5 8-46 +2.09 7.2 +4.29 14.8 -2.60 7.3 - 0.38 6.2EtOH -----7a All amines have the R-configuration.6 Yields of amine 50-60:;.R-amine as predicted. Yields of amine in this case areconsiderably lower (ca. 50) as would be expected,since transfer of the more sterically hindered HA wouldhave a higher activation energy (Table 4).The detailed mechanism of the reduction of ketoneoximes and their O-substituted derivatives by alkoxy-aluminium hydride complexes has recently been dis-cussed by US.^EXPERIMENTALT.1.c. of cabhydrate derivatives was performed onsilica gel with benzene-methanol (98 : 2) as solvent systemand a naphthoresorcinol-phosphoric acid spray for de-tection.The ether used in the reductions with lithiumaluminium hydride complexes was repeatedly dried oversodium. Solutions in chloroform were dried over calciumchloride and ethereal solutions over magnesium sulphate ;solvents were removed under reduced pressure at roomtemperature. The purity of the amines was established byg.1.c. on a 5 f t glass column of Carbowax 20M on ChromosorbW.Preparative g.1.c. was carried out with a 7 f t pre-parative column of Carbowax 20M. Rotations (f0-01")were determined for neat samples unless otherwise stated,with a Stanley photoelectric polarimeter and/or visually.Maximum specific rotations and absolute configurationsof the optically active amines have been reported asfollows : (S)-l-phenylethylamine, aID2O - 29' (MeOH) ; 7(S)-l-phenylpropylamine, aID2O - 19-85" ; 8 s 9 (S)-l-methyl-2-phenylethylamine, aID2O + 35.6" ; l0*l1 (S)-1,2-diphenyl-ethylamine, - 12.0" ; l2 (S)-1-(a-naphthyl)ethylamine,6 See S. R. Landor, 0. 0. Sonola, and A. R. Tatchell, J.C.S.Perkin I, 1974, 1294, for the preparation of ketone oximes andtheir O-methyl and O-tetrahydropyranyl derivatives.6 A.W. Ingersoll, Org. Synth., Coll. Vol. 11, 1943, p. b03.W. Leithe, B e y . , 1931, 64, 2827.8 M. E. Warren and H. E. Smith, J. Amer. Chem. SOL, 1965,F. M. Jaeger and J . A. van Dijk, Proc. Acad. Sci., Amster-l o V. M. Patapoo, V. M. Dmjanovich, and A. P. Terentiev,87, 1757.dam, 1941, 44, 2640.Zhur. obshchei Khim., 1965, 39(9), 1538.measured volume of a standardised ethereal solution oflithium aluminium hydride (ca. 18-20 g 1-l). Thc misturewas heated under reflux for 90 min, then the solution of theoxime or its O-substituted derivative (0.0125 mol) in dryether (20 ml) was added. Heating under reflux wascontinued for 2.5 11, then the mixture was cooled, thecomplex was decomposed with water (15 ml), and theprecipitated hydroxide was filtered off and washed withether (2 x 30 ml).The combined filtrate and washingswere extracted with dilute hydrochloric acid (3 x 20 ml)to separate all basic components. The aqueous acid layerwas strongly basified ( ~ M - N ~ O H ) and extracted with ether(3 x 50 ml), and the extract was washed with water(2 x 30 ml), dried (MgSO,), and evaporated to give an oilyproduct. The optically active primary amine was isolatedby fractional distillation under reduced pressure andcharacterised by i.r. and n.m.r. spectra; its purity waschecked by g.1.c.(b) With the ethanol-modi3ed complex. A solution of theglucofuranose (8.8 g, 0.025 mol) in dry ether (50 ml) wasadded to an ethereal solution of the hydride (1 g, 0.026 mol) .The mixture was heated under reflux for 90 min, afterwhich various amounts of ethanol in ether solution wereadded and heating under reflux was continued for 1 h. Asolution of the oxime or derivative (0.0125 mol) in dry ether(20 ml) was added. Heating under reflux was continuedfor 2.5 h. The mixture was then cooled and the excess ofreducing complex was decomposed with water ( 15 ml) .The products were separated as in (a).4/406 Received, 1st March, 1974111 W. Leithe, B e y . , 1932,65B, 660 (Chem. Abs., 1932,26, 3496).P. Pratesi, A. La Manna, and L. Fontanella, I2 Farmaco, ed.Sci., 1955, 10, 673; G. G. Lyle, J. Ovg. Chem., 1960, 26, 1779.13 H. Wolf, E. Bunnenberg, and C. Djerassi, Chem. Ber., 1964.97(2), 633; E. Samuelsson, Thesis, University of Lund, 1923(Chem. Abs., 1924, 18, 1833).l4 L. G. Thome, B e y . , 1903,36,682; A. Kjaerand S. E. Hannen,Acta Chem. Scand., 1967, 11, 898.15 P. A. Levene and M. Kuna, J. Biol. Chem., 1938,122,291.16 P. Karrer and P. Dinkel, Helv. Chim. Acta, 1953, 36, 122.1' N. Kornblum, W. D. Gurowitz, and D. E. Hardies, J . Amer.Chem. SOC., 1960, 83, 3099
机译:1902 J.C.S. Perkin IA对称综合。第九部分.用氢化铝锂-3-0-苄基-I,2-~-cyc~ohexy~idene-a-D-gfucofuranose 络合物还原酮肟及其 O-取代衍生物,得到光学活性胺作者:Stephen R. Landor,'t Oluntunji 0.Sonola 和 Austin R. Tatchell,坎帕拉马克雷雷大学,以及酮肟及其 O-四氢吡喃基和 O-甲基衍生物与氢化铝锂-3-O-苄基-l.2-O-环己亚基-ct-D-呋喃葡萄糖络合物的不对称还原产生光学纯度高达 56% 的光学活性胺。通过还原O-取代的肟获得的立体选择性与还原游离肟获得的立体选择性相似。所有得到的胺都具有S构型,该方法可用于确定胺的绝对构型。不对称还原与乙醇修饰的葡萄糖呋喃糖络合物得到R-构型的光学活性胺.Thames Polytechnic, London SE18IN Part 1-111 2-4 我们报道了氢化铝锂-单糖络合物对酮的不对称还原,以产生具有高达 70% 立体选择性的光学活性醇。我们现在已经将这些研究扩展到茶胺的减少。这里的基本机理步骤类似于羰基的情况,羰基必须涉及动力学控制的氢化物转移,其中空间位阻最小的过渡态占主导地位。因此,光学活性胺的形成取决于这样一个事实,即与氢化物配合物接近碳氮双键两侧相对应的活化自由能必须不同,导致形成两个对映异构体(R和S)的量不相等;空间差越大,因此活化能的差异越大,获得的立体选择性就越高。虽然羰基肟基团的多键相似,但游离肟具有与铝还原反应的附加羟基必须通过分子间氢化物优先从等电子亚氨基的第二分子转移HB并获得光学活性---cH NH2--c'c/HR2= HAL C1#12L06,OMe或最小氢化物-单糖还原络合物,正在析出氢。根据先前报道的证据3P4 0 0,可以假设在该反应中被取代的氢原子主要是Hg.然而,这样形成的复合物(I)中的Al、0、N和C原子的共面性使HA在空间上不可能在能量上转移到肟碳原子。因此,不对称的当前地址:埃克塞特大学化学系,埃克塞特EX4 4QD。第八部分,S. R. Landor, B. J. Miller, J. P. Regan, and A. R.Tatchell, J.C.S. Perkin I , 1974, 557.* S. R. Landor, B. J. Miller, 和 A. R. Tatchell, J .化学SOC。(C)、(a) 1966年、1822年;( 乙 ) 1966, 2280;(c) 1967, 197.SCHEME氢化铝-单糖络合物(11)与(I)中肟基团的碳原子,预计会得到S构型的光学活性胺(见方案)。事实证明确实如此。10个实例,包括烷基和芳基酮环氧烃(表1和表2),都给出了S-con-figuration的光学活性胺。先前未建立构型的三种胺现在被分配为S构型.肟的不对称还原及其O-甲基和O-四氢吡喃基衍生物都具有相似的立体选择性(表3),如果涉及第二分子还原剂的共同机制起作用,则可以预期。肟上的O-取代基显然太遥远了3 S.R. Landor, A. R. Tatchell, and R. H. Williams, 未发表的工作。Y .M. Chan, S. I70%。t 胺的收率约为 8 B.p. 160“ a t 11 mmHg.60%。I 甲醇溶液的旋转 (c 12.6%).b B.p. 100“ at 35 mmHg.c B.p. 70“ 在 6 mmHg。d B.p. 138“ a t 1 mmHg.表2用呋喃葡萄糖络合物还原脂肪族酮肟酮:乙基甲基异丙基丁基异丁基甲基己基环己基甲基P'OPYl甲基叔丁基甲基甲基酮胺丁胺丁胺胺丁丁酮酮胺丁胺丁胺丁丁胺 叔丁胺 丁 酮' 0 ' LiAlH, I 0(moll [aln 20 e.e. [a]D 20 4 .t [ctlD 20 e.] e.t [ a ] D e.e. 20 e.e. [a]D 20 e.e.t [a]D 20 e.e.0.012 +0*41 5.6 +0-27 +0*15 +0*18 4.2 +0.19 4.5 +0*18 +041 9.20.018 +0*60 6.73 +0-61 + 0.42 +0.64 12-5 +0*40 9.5 +0*67 +0-93 14.10.025 +0*66 8.96 +0*79 + 0.65 +0*90 21.00 +0*82 19.5 +0*95 +lea2 21.40.032 +1*1 14.60 f0.76 + 0.76 +0*96 21.80 +0-74 17.5 +0.0.91 +149 24.000.039 +0*58 7.84 +0*56 + 0.72 3.0.88 20.40 +043 12.5 +0.70 +1-43 21-600.046 +0*43 6.83 +0.48 + 0.48 1-0.82 19.00 +0.46 10.90 +0-66 +0*77 11-608 B.p.胺的收率 > 70%.B.p. 63“ at 76 cm Hg.t 比旋转以前没有报道过.B.p. 92-94” a t 76 cm Hg. C B.p. 86“ at 76 cm Hg. B.p. 320” at 76 cinHg.Hg. I B.p. 102“ a t 76 cm Hg. 0 B.p.70” at 26 mmHg.hB.p. 58“ a t 12 mmHg.%[.ID eo e.e.+0-60 18-8+0.90 27.2+1*56 48.8+1*82 66.2 + 1-59 50.2+1.44 46.8101“ a t 76 cm表 3酮、酮肟、O-四氢吡喃基和O-甲基衍生物的还原结果R1R2C=X x = o X = NOH X = NOThD * X = NOMe7 R1,MeE tMePhMe10.6' (+)-(S)18.3;30 * (+)-(S)7.8;3.0 (+)-(S)11.4 (+)-(S) '76 (+)-(S) ' tThp = 四氢吡喃基。[ 一 ] D Z o- 3.1- 2.84 7.56- 3-05 - 7-56 + 1.1 + 0-79 + 0.76 + 0.95 + 0.82 + 0.95 + 1.59 + 1-82SSSSS sST$ +SstSS7 yo e.e.10.714.121.224.89.614.621.819.524.0056.2[alD20 - 1-43 - 3.27- 3.12- 9.13+ 7.8+ 1-66 + 0.86+0.79 + 1.06 + 0.78 + 1.22 + 1.78 + 1.60yo e.c.3-5816.522.026.611.320-924.318.626.849.8[a]D2' - 6.1- 3.61 + 6.6- 3.32 - 10.1 + 1.33+ 0-96 + 0.77+ 1.43 + 1-41t 基于本工作进行配置分配.yo e.e.12.818-018.027.213.818-0023.018.422.644.0空间差异烷基取代基之间的体积。对于烷基芳基体系,电子和空间位位因素决定了立体选择性,如脱氧安息香肟而不是甲基萘基酮肟显示出最大的立体选择性,再次获得最大立体选择性(cj.参考文献 2 和 3),氢化锂与单糖的摩尔比约为 1 : 1。将肟还原的结果与先前获得的酮的结果进行比较(表3)表明,thJ.C.S.珀金 I[a],20 -80.8";l3(S)-异丁胺。[aID20 + 7.4“ 1A(1-甲基丁胺 1,2-二甲基丙基亚氨酸和 1,2,2-三甲基丙胺,未报告特定旋转);(S)-1-甲基戊基酰胺,[aID2'+4-3“;99 l5(S)-1,3-二甲基丁胺,[aJD19 +4.2:(MeOH);l6(S)-l-甲基庚胺,[aID2O 4-6.63”;l1(S)-1-环己基乙胺,[aID15及其O-甲基6和O-四氢吡喃基衍生物.6-(a)与氢化锂铝-3-O-苄基-1,2-0-环己亚基-a+-呋喃葡萄糖共聚体.加入呋喃葡萄糖1(8.8g,0.025mol)在干乙醚(50ml)中的溶液t o a + 3.2“ Jh 17烷基肟的还原 烷基芳基酮的对立选择性低于相应的酮,但二烷基酮肟的平均值高于二烷基酮(一个显着的例外是环己基甲基酮)。酮肟及其O-substi tut ed衍生物与et hanol修饰复合物(111)的不对称还原得到了R-构型的胺;这一观察结果为所提出的机理方案提供了支持。显然,乙氧基取代了HB,并且只能通过HA进行还原,导致乙醇修饰的酮肟和O-取代衍生物与呋喃糖复合物PhMeC=NOH PhMeeNOThp PhMeGNOMe PhCH,(Me)CTNOH EtMeC=NOH胺 伯胺 b 伯胺 b 伯胺 b 伯胺 * -.a m a [ a ] D 20 % e.e.0 s x a m a0.012 - 3.0 10.3 +1.17 3.3 +0.24 3.20.020 +3*0 10-3 +2*41 8.3 +2*67 9-2 +1*92 5.4 -0.36 4.90.026 +b*O 17-4 +3.32 11.5 +347 12.3 - 2.90 8.2 -0.95 13.80.032 +5-12 17.8 +3*68 12.7 +5.36 18.5 -4.84 13.6 - 0.61 8-30.039 + 2.5 8-46 +2.09 7.2 +4.29 14.8 -2.60 7.3 - 0.38 6.2EtOH -----7a 所有胺均具有R-构型.6胺的收率50-60:;.R-胺如预测的那样。在这种情况下,胺的产率比预期的要低得多(约50%),因为空间位阻的HA的转移将具有更高的活化能(表4)。烷氧基氢化铝络合物还原酮肟及其O-取代衍生物的详细机理最近由US.^EXPERIMENTALT.1.c.讨论。用苯甲醇(98:2)溶剂体系和萘间间间苯二酚-磷酸喷雾进行二硅胶解析。用于还原氢化锂络合物的乙醚反复干燥过钠。氯仿溶液在氯化钙上干燥,空灵溶液在硫酸镁上干燥;在室温下减压除去溶剂。胺的纯度由g.1.c确定。在 ChromosorbW.Preparative g.1.c. 上的 Carbowax 20M 的 5 f t 玻璃柱上。使用Carbowax 20M的7 f t制备柱进行。除非另有说明,否则使用Stanley光电偏振仪和/或目视测定纯样品的旋转(f0-01“)。光学活性胺的最大比旋转和绝对构型报告如下:(S)-l-苯乙胺,[aID2O - 29' (MeOH) ; % 7(S)-l-苯丙胺,[aID2O - 19-85“ ; 8 s 9 (S)-l-甲基-2-苯乙胺,[aID2O + 35.6” ; l0*l1 (S)-1,2-二苯乙胺,- 12.0“ ; l2 (S)-1-(a-萘基)乙胺,6 参见 S. R. Landor, 0.0. Sonola 和 A. R. Tatchell, J.C.S.Perkin I, 1974, 1294, 用于制备酮肟及其 O-甲基和 O-四氢吡喃基衍生物.6 A.W. Ingersoll, Org. Synth., Coll. Vol. 11, 1943, p. b03.W. Leithe, B e y ., 1931, 64, 2827.8 M. E. Warren 和 H. E. Smith, J. Amer. Chem. SOL, 1965,F. M. Jaeger 和 J .A. van Dijk, Proc. Acad. Sci., Amster-l o V. M. Patapoo, V. M. Dmjanovich, and A. P. Terentiev,87, 1757.dam, 1941, 44, 2640.Zhur.obshchei Khim., 1965, 39(9), 1538.测量了氢化铝锂标准化空灵溶液的体积(约18-20g 1-l)。在回流下加热THC雾气90 min,然后加入茶肟或其O取代衍生物(0.0125 mol)的干醚(20 ml)溶液。在回流下继续加热2.5 11,然后冷却混合物,用水(15毫升)分解复合物,滤除沉淀的氢氧化物并用乙醚(2×30毫升)洗涤。将合并的滤液和洗涤液用稀盐酸(3×20ml)提取,以分离所有基本组分。将酸水层强碱化(~M-N~OH)并用乙醚(3×50ml)萃取,提取液用水(2×30ml)洗涤,干燥(MgSO),蒸发得到油性产物。通过分馏减压分离出具有光学活性的伯胺,并通过i.r.和n.m.r.光谱进行表征;其纯度由G.1.C.检查。(b) 使用乙醇修饰的3ed复合物。将呋喃葡萄糖(8.8g,0.025mol)在干乙醚(50ml)中的溶液加入到氢化物(1g,0.026mol)的空灵溶液中。将混合物在回流下加热90分钟,然后加入不同量的乙醇乙醚溶液,并在回流下继续加热1小时。加入肟或衍生物(0.0125mol)在干乙醚(20ml)中的溶液。在回流下加热2.5小时。然后将混合物冷却,并用水(15ml)分解过量的还原络合物。产品按(a)项所述分离。[4/406 收稿日期:3月1日, 1974111 W. Leithe, B e y . , 1932,65B, 660 (Chem. Abs., 1932,26, 3496).P. Pratesi, A. La Manna, and L. Fontanella, I2 Farmaco, ed.Sci., 1955, 10, 673; G. G. Lyle, J. Ovg. Chem., 1960, 26, 1779.13 H. Wolf, E. Bunnenberg, and C. Djerassi, Chem. Ber., 1964.97(2), 633; E. Samuelsson, Thesis, University of Lund, 1923(Chem. Abs., 1924, 18, 1833).l4 L. G. Thome, B e y ., 1903,36,682;A. Kjaerand S. E. Hannen,Acta Chem. Scand., 1967, 11, 898.15 P. A. Levene and M. Kuna, J. Biol. Chem., 1938,122,291.16 P. Karrer 和 P. Dinkel, Helv.奇姆。Acta, 1953, 36, 122.1' N. Kornblum, W. D. Gurowitz, and D. E. Hardies, J .美国化学SOC., 1960, 83, 3099

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号