首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >13C nuclear magnetic resonance spectra of some limonoids. Part I. The structure of procerin, an extractive fromCarapa procera
【24h】

13C nuclear magnetic resonance spectra of some limonoids. Part I. The structure of procerin, an extractive fromCarapa procera

机译:13C一些柠檬酰类化合物的核磁共振谱。第一部分。procerin的结构,一种从Carapa procera提取的提取物

获取原文
获取外文期刊封面目录资料

摘要

1974 43713C Nuclear Magnetic Resonance Spectra of Some Limonoids. Part I.The Structure of Procerin, an Extractive from CarapaproceraBy David A. H. Tay1or.t Department of Chemistry, University of York, York YO1 5DDThe structure (8) is suggested for procerin, a limonoid of the utilin group extracted from the timber of Carapaprocera (Meliaceae), on the basis of chemical and spectroscopic properties, including 13C n.m.r. spectra. Tablesare given of the 13C n.m.r. spectra of a number of other limonoids.DURING studies in Ibadan on extractives from theMeliaceae, many compounds have been obtained whichare too complex, or obtained in too small quantities, forus to have been able to determine their structures bychemical and spectroscopic means, including lH n.ni.r.One method of dealing with such problems is directcrystallographic analysis, without a heavy atom.Thedetermination of the structure of utilin (la) is an ex-ample. Unfortunately this method is not generallyapplicable; even when it is, it requires an able crystallo-graphic collaborator.It was hoped that application of 13C n.m.r. methodsmight answer at least some of these problems, and forthis purpose a collection of spectra of limonoids of knownstructure has been made. The carbon resonances inthese were assigned on the basis of the residual splittingin off-resonance decoupled spectra, data from theliterature, and the comparison of the spectra of closelyrelated compounds. The spectra of a number of deriva-tives of methyl meliacate (2) are given in Table 1 (fornomenclature see ref.2). Table 2 contains the spectraof some more complex compounds with the 1,29-cyclo-meliacate structure (3) typical of utilin. Some deriva-tives of methyl angolensate (4) are listed in Table 3, andderivatives of meliacolide (5) (for nomenclature see ref. 3)in Table 4. In some cases where resonances of thesame multiplicity have similar chemical shifts, there isno certain basis for assignment, and the Tables in thesecases give probable assignments only. Some of thesedata have been used already to reach a decision betweentwo structural proposals for fissinolide.4This paper reports the use of 13C n.m.r. in structuraldiagnosis of procerin, an extractive first obtained inIbadan from the bark of Carapa procera.5 The 13C n.m.r.spectrum showed resonances due to 41 carbon atoms.Integration of the lH n.m.r.spectrum indicated 52hydrogen atoms. The highest mass peak in the massspectrum (m/e 848-3099) corresponds to the formulaC4,H,,O1,. The lH and 13’C n.m.r. spectra showed thepresence of two methoxycarbonyl groups, the usualp-substituted furan ring, and one tertiary hydroxy-group. Quantitative hydrolysis gave 8 mol of acidper mol of procerin, and since the 13C spectrum showedonly seven carbonyl carbon atoms this suggests thepresence of a hydrolysable orthoester system, as int Present address: Department of Chemistry, University ofH. R. Hamson, 0. Hodder, C. W. L. Bevan, D. A. H.E. K. Adesogan and D. A. H. Taylor, J. Chem. SOC.( C ) , 1968,Natal, Durban, South Africa.Taylor, and T. G. Halsall, Chem. Comm., 1970, 1388.1974.utilin. This was confirmed by the presence of a 13Cresonance at 118.6 p.p.m., characteristic of an orthoestercarbon atom (cj. utilin, 119.3; bussein, 119.1) and aresonance due to an orthoacetate methyl group at 8 1.82in the lH spectrum (cj. utilin, 1.72; bussein 1-63). ThelH spectrum also shows four acetate methyl groupsEtMe-CH. I CO, c. I :6 -“OR202C R’( 1 )1 /9 a; R =-c-c’ , R ~ = ACI Me MeMe Me ‘-A -C ; R’=-C= C /H , R2= PriCOI Me Me( 3 ) co@ 0 R,*od R2 R2( 5 1C02Me( 4 13 1 2 a; Rf = 0, $= H ,a - 0 A c , R = R i H ; a’>’b; R1= 0 ,R2= H,a-OAc ,R3= R k HC ; R’= R2= H,a-OAc,R3=OAc,RL=Hd ; R1= R2= H,a-OAc,R R4= OACe ; R1= R2= 0, R3= RL= H; lactone6 2.05, 2.15 (6H), and 2-36, three nuclear methylgroups (8 1.26, 1.16, and 0-82), and a primary methylgroup (8 1.15).Analysis of the volatile acids from thea ; R = 0, R = Hb; R1=O, $= OHC ; R1= H f3-OH, R2=Hd; R1= 0 , R2= H,3)4-seco-f ; R’= R ~ = 0, R: O A ~ , RL= HN. S. Ohochuku and D. A. H. Taylor, J. Chem. SOC. (C),D. A. H. Taylor and F. W. Wehrli, J.C.S. Perkin I , 1973,C . W. L. Bevan, J . W. Powell, and D. A. H. Taylor, J. Chem.1969, 864.1599.SOC. (C), 1963, 980J.C.S. Perkin Ihydrolysis (by lH n.m.r.6) identifies this as due to apropionic acid residue.Together, these oxygen functions, two methoxycarb-onyl groups, one furan ring, one tertiary hydroxy-group,four acetates, one propionate, and one orthoacetate,account for all the oxygen atoms in procerin.Togetherpresent has been opened as in C.O.C. (6a), a transforma-tion product of mexicanolide.7The lH n.m.r. spectrum of procerin shows four signalsdownfield of those due to the methoxycarbonyl groups,in addition to those due to the furan ring. These are allsinglets (6 5.35, 5.64, 5.80, and 6.74). Since the TABLE 1Derivatives of methyl meliacate (2) ; 13C n.m.r. spectra (solvent CDCl, ; 6c values ; Me,Si standard)Carbon atom12345678910111213141516172021 *2223 *30OCH,MeCOCCCH,-.)I ,-Im -29 X-. rl212.758.0210.949.450-532.3173.5133-840.254.318.628.837-8125.332.9169.780.6120.4142.7109.8141.536.452.121-917.817.817.46 6 5 : :213.0 212.957.1 81.7211.4 108.650.0 41.948.8 53.332.6 32.5173.5 174-433.1 63.340.0 41.552.2 62.318.6 19.626.8 32.038.2 36.9164.2 165.6113.9 118.6168.3 166.581.0 81.1119.9 119.9143.0 143.1109.8 110.0141.2 141.437.7 47.052.2 52.022-0 22-619-0 21.718.6 18.818.0 16.8y1 23,.20 q".H210.655.3209.848.945.431.9173.4124-6150.952.621.930.136.9157.6111.3165-280.411 9.8143.0109.8141-234.052.224-521-416.016.4c0 c)Y217.662.378-438.248.033.4174.1131.740.862.918.829.238.1127.733.9170.180.6120.6142.7109.8141-633-461.9213.348.978.237.446-732.3173.8125.5151.951.222.330.936.9158.1109.9166.480.7120.0143.0110.0141.230-252.0214.053.878.438.748.932.7173.7136-240.562.021.633.037.6160.6112.4164.979.7120.2143.1110.2141-4128.852.021 7.478.085.739.052.233.3174.0133.040.952.218.829.238-3125.733.5169.980.6120.6142.9109.8141.844-262-2A0c,0 3 ce218.677.386.938-747.133.1174.257.841-650-719.930.035-246-433.1170.276.7120.8143.1109.8141-635.152.2169.6 169.6 170.1 169.6 170.023.2 25.9 22.2 22-7 23-621.1 26.2 22.0 21.2 22.220.5 20.7 21-2 19.9 20.718.0 16.7 20.7 18.1 19.916.7 16.0 15.6 16.8 17.7Other (extranuclear)* These rows may be intercl-m - 3?$-lrl0c, 2m2 16-856-577-438.148.433.0174.1138.441.649.922.430.136.845.234.4170.877.6;120.7142.9109.7141-8122-862.2169.622422.020-420.416.8ianged.L8i? ->.c, 5I-!rs, m+ c 4> x 320 m217.066-479.238.748-732.7174.060.141.449.219-229.936-946.233.9169.477.0120.7142.9109.7142456.752.1168.7169.221-820.7( ."816.722-4( 4R?8,8p.'4PIc, ce 2xc,u -r: A m214.066.878.839.248.633.4174-260.442.548-2 z 9.433-036.446.933.7172.077-0120.1143.1110.2141-063.652.3169.826-222-620.720.716.6?..I w -mX$cc,AeCt,213.267.8210.049.453.473.2174.9134.144.454.518.628.738.1126.033.1169-680.6120-4142.9109.7141.236.452.1ri-d 221.020-517.617-66Qe-7Lw I 2wTlh+- pCQ212.749.480.338.446.573.6175.734.944-951.218.626.838.2164.3113.0170.281.2119.9143-1109.8141-235.453.3169-823.823.120.718.417.1- La .-ldY 2;$'X?e ar(79.244-0219.846.350-233.8174.835.040.342.817.527.138.1164.8113.2170.181.2119.9142-9109.8141-235.761-927-725.621.717.9216.5 218.967.6 66-678.6 77-439.0 38-149.0 47-772.8 33.4175.9 173.8138.3 133.845.6 41-160.4 51.721-2 20.129-6 36.736.7 43.145.1 133.734.6 35-6168.5 172.076.7 79.0121.4 123-9143.1 143-0109.2 110.7140-6 142.1123-6 34-253-2 56-2,51-8,51.7166.9 170-423.0 23-722.8 21.121.2 20.816.5 19.414-6 16.611.6139.0(4(4127-7with the normal C,, nucleus of a limonoid, they alsoaccount for all the carbon atoms.It is significant that procerin contains no lactonesystem.Either therefore it belongs to the carbocyclic-ring-D group of limonoids, or else the lactone ring usually(I D. H. Calam and D. A. H. Taylor, J. Chem. SOC. (C), 1966,949.n.m.r. spectrum shows no double bonds (except those inthe furan ring), thebe must correspond to the carbinolprotons of four secondary ester groups, the other oxygenfunctions being tertiary.Similar carbinol singlets are characteristic of sub-7 E.K. Adesogan, C. W. L. Bevan, J. W. Powell, andD. A. H.Taylor, J. Chem. SOC. (C), 1966, 21271974 439stituents in the bicyclononane system of methyl meliacatederivatives (e.g. 2-hydroxyfissinolide and utilin l) andthey are not known to be produced by any other nucleus.We therefore assume as a working hypothesis the presenceTABLE 2spectra (solvent CDCl, ; aC values: hle,Si standard)Derivatives of methyl 1,29-cyclomeliacate (3) ; 13C n.1n.r.Carbonatom12345678910111213141616172021 *2223 *2930OCH,CO,RMeCO,MeC(0H) 0,Other (extranuclear)CCH,Utilin84.274.984.151-141.034.1174.389.687.244.164.630-138-784.637.6168.977-1120.6142.3110.1141.440.070.051.6170-6172-4168.0119.3(la)67*8(~)67*8(d)40*3(d)26.1 (t)20-318.717.717.016.616.415.113.411.3Busseinhydrolysisproductacetatemethylester (7b)83.977.782.945.642.433.6172.686-886.146.669.368.738.636.427.6169-276.7121.3143.2109.8140.639.970.161-7170-5170.6119.677.121.121.020.719.916.815-614.2Bussein84.379.683-044-943.633.3172.790.884.945.770.068.946.741-4176.2168.773.9122.0142.7109.9141-339.970.051-8170.5169.2168.4119.177.1183*3(~)36*9(d)30*3(d)26*6(t)20-920.720-720.319.718.417.816.816.914.211.6(74Procerin84.283.179.146.437.033.3172.689.088.246.922.827.844.886.761.9171.878-4122.9142.6109.7141.238.671.162.1, 61.6170.9, 169.6169-4, 169.2168.1118-6(8)27*0(t)21.421.421.021.018.416-413.411.68.6* These rows may be interchanged.of a bicyclononane system.The partial synthesis ofmexi~anolide,~ which is believed to follow the biochemicalroute, depends for the formation of the bicyclononanesystem on the presence of a lactone ring D. It thereforeseems unlikely that we have a bicyclononane containinga carbocyclic ring D, and more likely that procerin hasan opened lactone ring similar to that in C.O.C. (6a).This conclusion is supported by the lH n.m.r. spectrumof procerin.In the lH n.m.r. spectra of all the ring D* E. K. Adesogan and D. A. H. Taylor, J. Chem. SOC. (C),1970, 1710. ' T. D. Connollv. I. M. S. Thornton. and D. A. H. Tavlor.TABLE 3Derivatives of methyl angolensate (4) ; 13C n.m.r.spectra (solvent CDC1,; 6~ values; Me,Si standard)Carbonatom12346678910111213141616172021 *2223 *30OCH,CCH,Methyl MethylMethyl 6-hydroxy- 3 P-hydroxy-angolensate angolensate angolensate77.8 79.2 76.040-4 40.1 37.7212.7 212.2 72.549.0 49.8 50450.9 61.9 60-533-7 73-3 34.0174.3 177-1 174.6146.4 146.6 146.643.9 48.6 32.546.0 46.7 43.924.7 25.1 24.030-1 39.7 29.642-4 42-4 39.881.1 81.3 80.034.6 34-6 37.7170.4 170.6 170-480.2 80.3 80.0121.6 121.6 121.0143.3 143.3 142.7110.7 110.7 109.9141-4 141.3 140.7112.3 112.3 110.862-9 64.2 51.926-6 25.9 27.122.6 24.9 22.022.6 24.6 14.414.8 16.0 13.9* These rows may be interchanged.(44 (4b) (44TABLE 4Methylivorensate( 4 473441-5169-683.851.934.1173.3146.743.447.624.032.041.681.336-7170.079.3120.7142-6109.9140.9111-956.228.822.622.013-8Derivatives of meliacolide (5) ; I3C n.m.r.spectra(solvent CDC1,; 6~ values; Me,Si standard)Dihydro-Carbon Gedunin gedunin Khivorinatom12346678910111213141616172021*2223*MeCOCCH,167.0126-9203-844.039-614.9 t73-242-646.040.017.7 t18.3 t38.769.866.9167.478.2120.6143.0109.8141.4169.827.226.023.321-721-019.733.747.8216.746.638.915.073.742.044.037.417.4 723-8 t38.869.856-7167.678.4120-6142-9109.8141.1169-826.126.921-120-918-015.7(6472.326.6 t76.936-937-022-3 t73.842-2236.340.714.4 t26.1 t38-869.766.4167.678-4120.6143.0109.9141.1169.9169.7169-627-421.621.321.121-118.317-316.411p-Acetoxy-khivorin( W76-126-2 t76.636.037.822.9 t73.041.939.741.667.037-637.868.764.7167.178.3120.0143.3109.8141.2169-9169.6169.227-421.821.621.421.221.220.117.6( x 2)( x 2)7-OXO- 7-OXO-gedunin khivorin -(64166.0126-3203.246.247.636.7 t208.363.463.740-017.1 t32.1 t37.765.764.6166.978.0120.3143.1109.8141.027.020.920.719-717.4w72.526.8 t76.837.346.8209-462.944.440.616-9 t32-2 t37.366.463.3167-378.2120.4143.7109.8141.0169.6170.136-7 t36.921.121.120.820.816-916.8. I ' Chem: Comm., 197f,'17.* These rows may be interchanged. t Assignment doubtful440 J.C.S. Perkin Ithis structure (utilin, 6 2-77 and 2.17, J 10 Hz; bussein,6 3-15 and 2.55, J 10 Hz). The doublet of doubletswhich commonly arises from the 15-protons has a largercoupling constant, typically 19 Hz. We thereforeconsider that these further observations strongly supportthe hypothesis that procerin contains a bicyclononanesystem, and that this is present in a 1,29-cyclomeliacateskeleton (3), which has been modified by the opening ofring D to give a 8-acyloxy-methyl ester.To identifyprocerin completely, it is necessary to locate in thisnucleus the oxygen functions already mentioned, i.e.four secondary esters (including that already located atC-17), one tertiary ester, an orthoacetate, and a tertiaryh ydroxy-group.Normally, orthoacetates are resistant to alkalinehydrolysis, as in bussein. The orthoacetate in procerinis hydrolysed, as shown by the results of total acidtitration. The orthoacetate in utilin is similarly hydro-lysed; this is because one of the points of attachmentis C-14, p to the lactone carbonyl group, where it can belost by elimination to give an +-unsaturated ester anda hemi-orthoacetate, which is hydrolysed by alkali.We therefore assign one oxygen of the orthoacetate inprocerin to C-14, to allow the same mechanism to operatein this case.We consider the other points of attachmentto be C-8 and C-9, as in utilin, since this is known to givea stable, naturally occurring group.We assign two of the secondary esters to C-3 and C-30,in accord with the usual substitution pattern. For theseto give rise to IH n.m.r. carbinol singlets, it is necessaryfor tertiary oxygen atoms to be located at C-2 and C-9,and a tertiary oxygen atom is also expected a t C-1,resulting from the ring A bridging. From comparisonwith bussein, the singlets a t 6 5.35 and 5-64 may beascribed to H-3 and H-30, respectively.This leaves one secondary ester group to be located.Three lines of evidence suggest that this is at C-14.(a)This is the only location left in the nucleus where an esterwould give rise to a carbinol singlet, except C-29 whichis believed to be unsubstituted. (lH and 13C n.m.r.;see above). (b) The chemical shift of the remainingsinglet (6 6-74) is unusually large, suggesting locationnext to a carbonyl group. (c) The usual C-15 protonn.m.r. signals (utilin, 6 3.35 and 2.53, J 19 Hz) are absentin procerin, although this might also be due to theopening of the lactone ring.An alternative possibility is that the ester is at C-6,as in many known limonoids. This substitution norm-ally gives rise to a broad H-6 singlet, owing to weakcoupling with H-5.The singlet at 6 6-74 is much sharperthan this, showing no sign of weak coupling. Further,there is a two-proton doublet at 6 2-26 ( J 7 Hz) and whatappears to be a one-proton triplet at 6 2-88 ( J 7 Hz).Although these have not been shown to be coupled, andone band of the supposed triplet is obscured by the ABlactones of the limonoid group, and of C.O.C. (6a), theresonance due to H-17 is characteristically broadened loin comparison with other singlets in the same spectrum.The band at 6 5.80 in the spectrum of procerin is broad-ened in this way, and could correspond to H-17, the otherR Of R’( 6 ) ( 7 ) .a;R = 0 a;R’=Pr’ a n d Pr‘CH2(mixture)R2= Ac, R3= Pr =1 2 3 b;R =Me, R = H , R = H 2‘7 b;R = H,p-OAcOH‘ I(8)singlets being much sharper.There is no signal detect-able in the 6 3 4 region which can be assigned to H-17in a carbocyclic ring D. The chemical shift of 6 5-80assigned to H-17 is similar to that in the lactones, andrequires an acyloxy-substituent at C-17, not an ether asin C.O.C. (6a)Derivatives of the methyl meliacate group containingthe bicyclononane system normally have a l-oxo-group.The 13C n.m.r. spectrum of procerin shows that no ketoneis present. The only known natural bicyclononaneswithout a l-ketone are members of the group of 1,29-cyclo-compounds, which so far contains utilin (la):entandrophragmin (1 b) ,l candollein (Ic) ,11J2 bussein(7a),l3 and the closely related phragmalin.14 The pre-sence of this bridge in procerin is suggested by the factthat only three nuclear methyl groups are shown by the1H n.m.r.spectrum, instead of the usual four in methylmeliacate. It is supported by the 13C n.m.r. spectrum ofprocerin, which is similar in detail to those of utilin andof bussein hydrolysis product acetate methyl ester (7b),and in particular shows a triplet at 38.6 p.p.m. whichmay be ascribed to C-29 in this bridged ring structure(cj. utilin, 40.0; bussein, 39.9 p.p.m.). A doublet ofdoublets (6 3.04 and 2-74, J 13 Hz) in the lH n.m.r.spectrum may be ascribed to the two C-29 protons inN. S. Ohochuku and J. W. Powell, Chem. Comm., 1966, 422.11 G. A. Adesida and D. A. H. Taylor, Phytochemistry, 1967, 8,1429.l2 K. Wragg, unpublished results.l3 R.Hanni and Ch. Tamm, J.C.S. Chem. Comm., 1972, 1253.l4 R. R. Arndt and W. H. Barschers, Tetrahedron, 1972, 28,23331974system ascribed to 29-H,, these correspond to the posi-tions of the 6-H,, 5-H system in the spectra of manymethyl meliacate derivatives.We consider that the tertiary acetate is more likelyto be at C-2, leaving the tertiary hydroxy-group at C-1,on grounds of steric hindrance, and because 2-acetylderivatives are known, e.g. 2-acetoxyfissinolide.8There is no evidence to show where the propionateester system is situated. In view of the number ofnatural products with more complex ester groups at C-3and acetates at other positions (e.g. utilin, bussein, andmethyl 30-acetoxy-3P-isobut yryloxy- l-oxomeliacate 15)it is perhaps more likely that the propionate is at C-3.We therefore consider that procerin is represented by thestructure (8), in which the acyl groups are most probablydistributed as shown.Assignments of the 13C n.m.r.spectrum of procerin, based on this structure, are in-cluded in Table 2.EXPERIMENTALIsoY'ation of Procerin.-The milled bark of Carapa proceya(10 kg) was extracted with refluxing light petroleum (b.p.60-80°). The solid which precipitated from the cold,concentrated extract was recrystallised from methanol togive a mixture (130 mg), m.p. 260-270", not separated onfurther crystallisation. This (70 mg) was kindly separatedby t.1.c. by Dr. J. D. Corinolly, to give procerin (43 mg) anda second compound (24 mg). Previous extractions ofCnrupa bark had given only procerin.KCrystallised from methanol, procerin had m.p.296-301",8~ (CDC1,; 60 and 100 MHz) 7-64 and 7-39 (in, 2 x a-furan),6.74(s), 6-46 (m, p-furan), 5-80(s), 5-64(s), 5.35(s), 3.9 (s, OH),3-72(s) and 3.66(s) (2 x OMe), 3.04 and 2-74 (dd, J 13 Hz),2.86 (t, J 8 Hz), 2.26 (2H, d, J 8 Hz), 2.36, 2.15 (6H), 2.05,1-82, 1.26, and 0.82 (all s, 8 x CMe tert.), and 1.15 (t, J 7.5Hz, CMe primary) (Found: lMf, 848.3099. Calc. forC4,HK2Ol,: M , 848-3103). The second compound, m.p.285-288", had M+ 424 (probably C,,H,,O,).Quantitative Hydrolysis of Procerin.-Procerin (13.7 mg)was dissolved in methanol (10 ml) and aqueous 0 . 1 ~ -sodium hydroxide (10 ml) and refluxed for 0.5 h. Titrationagainst aqueous 0.1N-hydrochloric acid (phenolphthalein;8.7 ml required) revealed the production of 8.06 mol of acidper mol of procerin. The solution was treated with more0-1N-hydrochloric acid (total 10 ml) and distilled to dryness.The residue was treated with water (10 ml) and distilled todryness again. Titration of the combined distillates with0.0 1N-sodium hydroxide (phenolphthalein) required 8- 1 ml,equivalent to the production of 5-01 mol of volatile acid forevery mol of procerin. The neutralised solution from thetitration was evaporated to dryness, and the residue wasdissolved in D,O. lH N.m.r. spectroscopic examination ofthe solution showed the presence of acetic and propionicacids in the ratio 10 : 1.I thank the S.R.C. for a grant for 13C n.m.r. studies, andDr. F. W. Wehrli for advice and assistance in assigning thespectra.3/1586 Received, 27th J d y , 19731l5 D. A. H. Taylor, J . Chem. SOC. (C), 1969, 2439
机译:1974 43713C 一些类柠檬的核磁共振光谱。Part I.The Structure of Procerin, an Extractive from Carapaprocera作者:David A. H. Tay1or.t 约克大学化学系 YO1 5DD 根据化学和光谱特性,包括 13C n.m.r. 光谱,建议对 procerin 的结构 (8) 提出,procerin 是一种从 Carapaprocera (Meliaceae) 木材中提取的 utilin 基团的类柠檬素。表中给出了许多其他柠檬酰类化合物的13C n.m.r.光谱。在伊巴丹对Meliaceae提取物的研究期间,已经获得了许多化合物,这些化合物太复杂,或者获得的数量太少,以至于我们无法通过化学和光谱手段确定其结构,包括lH n.ni.r.处理此类问题的一种方法是直接晶体学分析,没有重原子。utilin (la) 结构的测定是一个例。不幸的是,这种方法并不普遍适用;即使是这样,也需要一个有能力的晶体学合作者。人们希望应用13C n.m.r.方法至少可以回答其中的一些问题,为此目的,已经收集了已知结构的柠檬类化合物的光谱。这些碳共振是根据非共振解耦光谱中的残余分裂、文献数据以及密切相关化合物的光谱比较来分配的。表1给出了甲基二甲酸甲酯(2)的一些衍生物的光谱(参见参考文献2)。表2包含一些更复杂的化合物的光谱,这些化合物具有典型的1,29-环-半合物结构(3)。表3列出了安戈伦酸甲酯(4)的一些衍生物,表4列出了美利亚科林(5)的衍生物(命名见参考文献3)。在某些情况下,相同多重性的共振具有相似的化学位移,则没有确定的分配基础,这些情况下的表格仅给出可能的分配。其中一些数据已被用于在裂变内酯的两种结构建议之间做出决定.4本文报告了13C n.m.r.在procerin的结构诊断中的应用,procerin是一种首先在伊巴丹从Carapa procera的树皮中获得的提取物.5 13C n.m.r.光谱显示了由于41个碳原子引起的共振。lH n.m.r.谱的积分表明有52个氢原子。质谱中的最高质量峰(m/e 848-3099)对应于公式C4,H,,O1,。lH 和 13'C n.m.r. 光谱显示存在两个甲氧羰基、通常的 p 取代的呋喃环和一个叔羟基。定量水解得到每摩尔 8 mol 的酸 procerin,并且由于 13C 光谱仅显示 7 个羰基碳原子,这表明存在可水解的原酯系统,如 int 现地址:H 大学化学系。R.哈姆森,0。霍德,CWL 贝文,DAHE. K. Adesogan 和 D. A. H. Taylor, J. Chem. SOC.( C ) , 1968,Natal, Durban, South Africa.Taylor, and T. G. Halsall, Chem. Comm., 1970, 1388.1974.utilin.118.6 p.p.m.处存在13Cresonance,这是orthoestercarbon原子的特征(cj.utilin,119.3;bussein,119.1),以及lH光谱中8 1.82处的原乙酸甲酯甲基引起的共振(cj.utilin,1.72;bussein 1-63)。ThelH 光谱还显示四个乙酸甲基EtMe-CH。我 CO, c.I :6 -“OR202C R'( 1 )1 /9 a;R =-c-c' , R ~ = ACI Me MeMe Me '-A -C ;R'=-C= C /H , R2= PriCOI Me Me( 3 ) co@ 0 R,*od R2 R2( 5 1C02Me( 4 13 1 2 a;Rf = 0, $= H ,a - 0 A c , R = R i H ;a'>'b;R1= 0 ,R2= H,a-OAc ,R3= R k HC ;R'= R2= H,a-OAc,R3=OAc,RL=Hd ;R1= R2= H,a-OAc,R% R4= OACe ;R1=R2=0,R3=RL=H;内酯[6 2.05, 2.15 (6H), and 2-36], 3 个核甲基 (8 1.26, 1.16, 和 0-82) 和一个伯甲基 (8, 1.15)。分析来自thea的挥发性酸;R = 0,R = Hb;R1=O, $= OHC ;R1= H f3-OH, R2=Hd;R1= 0 , R2= H,3)4-seco-f ;R'= R ~ = 0, R: O A ~ , RL= HN.S. Ohochuku 和 D. A. H. Taylor, J. Chem. SOC. (C),D. A. H. Taylor 和 F. W. Wehrli, J.C.S. Perkin I , 1973,C .WL 贝文,J .W. Powell, and D. A. H. Taylor, J. Chem.1969, 864.1599.SOC. (C), 1963, 980J.C.S. Perkin Ihydrolysis (by lH n.m.r.6) 认为这是由于丙酸残留所致。这些氧功能,两个仅甲氧基酸基团,一个呋喃环,一个叔羟基,四个乙酸酯,一个丙酸盐和一个原乙酸酯,占了原色素中的所有氧原子。在C.O.C.(6a)中,墨西哥内酯的转化产物.7丙塞林的lH n.m.r.谱图除了呋喃环引起的信号外,还显示出由甲氧羰基引起的信号的四个信号。这些是全单体(6、5.35、5.64、5.80 和 6.74)。由于%表1甲酸甲酯的衍生物(2);13C n.m.r.谱图(溶剂CDCl,;6c值;Me,Si标准)碳原子12345678910111213141516172021 *2223 *30OCH,MeCOCCCH,-.)我,-Im -29 X-。RL212.758.0210.949.450-532.3173.5133-840.254.318.628.837-8125.332.9169.780.6120.4142.7109.8141.536.452.121-917.817.817.46 6 5 : :213.0 212.957.1 81.7211.4 108.650.0 41.948.8 53.332.6 32.5173.5 174-433.1 63.340.0 41.552.2 62.318.6 19.626.8 32.038.2 36.9164.2 165.6113.9 118.6168.3 166.581.0 81.1119.9 119.9143.0 143.1109.8 110.0141.2 141.437.7 47.052.2 52.022-0 22-619-0 21.718.6 18.818.0 16.8y1 23,.20 Q“。H210.655.3209.848.945.431.9173.4124-6150.952.621.930.136.9157.6111.3165-280.411 9.8143.0109.8141-234.052.224-521-416.016.4c0 c)Y217.662.378-438.248.033.4174.1131.740.862.918.829.238.1127.733.9170.180.6120.6142.7109.8141-633-461.9213.348.978.237.446-732.3173.8125.5151.951.222.330.936.9158.1109.9166.480.7120.0143.0110.0141.230-252.0214.053.878.438.748.932.7173.7136-240.562.021.633.037.6160.6112.4164.979.7120.2143.1110.2141-4128.852.021 7.478.085.739.052.233.3174.0133.040.952.218.829.238-3125.733.5169.980.6120.6142.9109.8141.844-262-2A0c,0 3 ce218.677.386.938-747.133.1174.257.841-650-719.930.035-246-433.1170.276.7120.8143.1109.8141-635.152.2169.6 169.6 170.1 169.6 170.023.2 25.9 22.2 22-7 23-621.1 26.2 22.0 21.2 22.220.5 20.7 21-2 19.9 20.718.0 16.7 20.7 18.1 19.916.7 16.0 15.6 16.8 17.7其他(核外)* 这些行可以是intercl-m - 3?? $-LRL0C, 2米216-856-577-438.148.433.0174.1138.441.649.922.430.136.845.234.4170.877.6;120.7142.9109.7141-8122-862.2169.622422.020-420.416.8。L8i?->.c, 5I-!&rs, m+ c 4> x 320 m217.066-479.238.748-732.7174.060.141.449.219-229.936-946.233.9169.477.0120.7142.9109.7142456.752.1168.7169.221-820.7( &.”816.722-4( 4R?8,8p.'4PIc, ce 2xc,u -r: A m214.066.878.839.248.633.4174-260.442.548-2 z 9.433-036.446.933.7172.077-0120.1143.1110.2141-063.652.3169.826-222-620.720.716.6?..I w -mX$cc,AeCt,213.267.8210.049.453.473.2174.9134.144.454.518.628.738.1126.033.1169-680.6120-4142.9109.7141.236.452.1ri-d 221.020-517.617-66Qe-7Lw I 2wTlh+- p%CQ212.749.480.338.446.573.6175.734.944-951.218.626.838.2164.3113.0170.281.2119.9143-1109.8141-235.453.3169-823.823.120.718.417.1- La .-ldY 2;$'X?电子邮件(79.244-0219.846.350-233.8174.835.040.342.817.527.138.1164.8113.2170.181.2119.9142-9109.8141-235.761-927-725.621.717.9216.5 218.967.6 66-678.6 77-439.038-149.0 47-772.8 33.4175.9 173.8138.3 133.845.6 41-160.4 51.721-2 20.129-6 36.736.7 43.145.1 133.734.6 35-6168.5 172.076.7 79.0121.4 123-9143.1 143-0109.2 110.7140-6 142.1123-6 34-253-2 56-2,51-8,51.7166.9 170-423.0 23-722.8 21.121.2 20.816.5 19.414-6 16.611.6139.0(4(4127-7与正常的C,,类化合物的原子核,它们也占所有的碳原子。重要的是,procerin不含内酯系统。因此,它要么属于类柠檬酰类化合物的碳环-D组,要么通常属于内酯环(I D. H. Calam and D. A. H. Taylor, J. Chem. SOC. (C), 1966,949.n.m.r. 光谱显示没有双键(呋喃环中的双键除外),thebe 必须对应于四个仲酸酯基团的羧醇质子,其他氧官能团为叔属。类似的甲醇单体是 sub-7 E.K. Adesogan、C. W. L. Bevan、J. W. Powell 和 D 的特征。A. H.Taylor, J. Chem. SOC. (C), 1966, 21271974甲基甲酯衍生物(例如2-羟基裂纤内酯和utilin l)的双环壬烷系统中的439种成分,并且不知道它们是由任何其他原子核产生的。因此,我们假设存在TABLE 2spectra(溶剂CDCl,;aC值:hle,Si标准)1,29-环美洲酸甲酯的衍生物(3);13C n.1n.r.碳原子12345678910111213141616172021 *2223 *2930OCH,CO,RMeCO,MeC(0H) 0,其他(核外)CCH,Utilin84.274.984.151-141.034.1174.389.687.244.164.630-138-784.637.6168.977-1120.6142.3110.1141.440.070.051.6170-6172-4168.0119.3(la)67*8(~)67*8(d)40*3(d)26.1 (t)20-318.717.717.016.616.415.113.411.3Busseinhydrolysis产物乙酸甲酯(7b)83.977.782.945.642.433.6172.686-886.146.669.368.738.636.427.6169-276.7121.3143.2109.8140.639.970.161-7170-5170.6119.677.121.020.719.916.815-614.2Bussein84.379.683-044-943.633.3172.790.884.945.770.068.946.741-4176.2168.773.9122.0142.7109.9141-339.970.051-8170.5169.2168.4119.177.1183*3(~)36*9(d)30*3(d)26*6(t)20-920.720-720.319.718.417.816.816.914.211.6(74Procerin84.283.179.146.437.033.3172.689.088.246.922.827.844.886.761.9171.878-4122.9142.6109.7141.238.671.162.1, 61.6170.9, 169.6169-4, 169.2168.1118-6(8)27*0(t)21.421.421.021.018.416-413.411.68.6* 这些行可以互换。mexi~anolide,~的部分合成被认为遵循生化途径,取决于内酯环D的存在下双环壬烷系统的形成。因此,我们似乎不太可能有一个含有碳环环D的双环壬烷,而更有可能的是,procerin hasan打开了类似于C.O.C.(6a)中的内酯环。这一结论得到了 procerin 的 lH n.m.r. 谱的支持。在所有环的 lH n.m.r. 光谱中,D* E. K. Adesogan 和 D. A. H. Taylor, J. Chem. SOC. (C),1970, 1710。' TD Connollv。I.M.S.桑顿。表3安哥磺酸甲酯的衍生物 (4) ;13C n.m.r.spectra (溶剂CDC1,;6~值;Me,Si标准)Carbonatom12346678910111213141616172021 *2223 *30OCH,CCH,甲基6-羟基-3-对羟基安山酸酯 Angolensate Angolensate 77.8 79.2 76.040-4 40.1 37.7212.7 212.2 72.549.0 49.8 50450.9 61.9 60-533-7 73-3 34.0174.3 177-1 174.6146.4 146.6 146.643.9 48.6 32.546.0 46.7 43.924.7 25.1 24.030-1 39.7 29.642-4 42-4 39.881.1 81.3 80.034.6 34-6 37.7170.4 170.6 170-480.2 80.3 80.0121.6 121.6 121.0143.3 143.3 142.7110.7 109.9141-4 141.3 140.7112.3 110.862-9 64.2 51.926-6 25.9 27.122.6 24.9 22.022.6 24.6 14.414.8 16.0 13.9* 这些行可以互换。(44 (4b) (44表4象牙甲酯( 4 473441-5169-683.851.934.1173.3146.743.447.624.032.041.681.336-7170.079.3120.7142-6109.9140.9111-956.228.822.622.013-8美硫古林衍生物 (5) ;I3C n.m.r.spectra(溶剂CDC1,; 6~值;Me,Si标准品)二氢碳Gedunin gedunin Khivorinatom12346678910111213141616172021*2223*MeCOCCH,167.0126-9203-844.039-614.9 t73-242-646.040.017.7 t18.3 t38.769.866.9167.478.2120.6143.0109.8141.4169.827.226.023.321-721-019.733.747.8216.746.638.915.073.742.044.037.417.4 723-8 T38.869.856-7167.678.4120-6142-9109.8141.1169-826.126.921-120-918-015.7(6472.326.6 T76.936-937-022-3 T73.842-2236.340.714.4 T26.1t38-869.766.4167.678-4120.6143.0109.9141.1169.9169.7169-627-421.621.321.121-118.317-316.411p-乙酰氧基-khivorin( W76-126-2 t76.636.037.822.9 t73.041.939.741.667.037-637.868.764.7167.178.3120.0143.3109.8141.2169-9169.6169.227-421.821.621.421.221.220.117.6( x 2)( x 2)7-OXO- 7-OXO-gedunin khivorin -(64166.0126-3203.246.247.636.7 t208.363.463.740-017.1 t32.1 t37.765.764.6166.978.0120.3143.1109.8141.027.020.920.719-717.4w72.526.8 T76.837.346.8209-462.944.440.616-9 T32-2 T37.366.463.3167-378.2120.4143.7109.8141.0169.6170.136-7 T36.921.121.120.820.816-916.8。I ' Chem: Comm., 197f,'17.* 这些行可以互换。t 分配可疑440 J.C.S. Perkin Ithis 结构 (utilin, 6 2-77 and 2.17, J 10 Hz; bussein,6 3-15 and 2.55, J 10 Hz).通常由 15 个质子产生的双峰的双峰具有较大的耦合常数,通常为 19 Hz。因此,我们认为这些进一步的观察结果有力地支持了以下假设:procerin 含有双环壬烷系统,并且它存在于 1,29-环环甲酸骨架 (3) 中,该骨架已被环 D 的开口修饰以产生 8-酰氧基甲酯。为了完全鉴定原色蛋白,有必要在该细胞核中定位已经提到的氧功能,即四个仲酯(包括已经位于C-17的仲酯),一个叔酯,一个原乙酸酯和一个叔羟基。通常,原乙酸酯对碱性水解具有抵抗力,如在bussein中。原乙酸酯在procerinis中水解,如总酸滴定结果所示。utilin中的原乙酸酯同样被水解;这是因为其中一个附着点是C-14,p到内酯羰基,在那里它可以通过消除而失去,得到+-不饱和酯和半-原乙酸酯,其被碱水解。因此,我们将原乙酸酯脐端蛋白的一种氧分配给C-14,以允许相同的机制在这种情况下起作用。我们认为其他附着点是 C-8 和 C-9,就像在 utilin 中一样,因为已知这会产生一个稳定的、天然存在的基团。我们将两种仲酯分配给C-3和C-30,符合通常的取代模式。为了产生IH n.m.r.甲醇单线态,叔氧原子必须位于C-2和C-9处,并且叔氧原子也应位于C-1,由环A桥接产生。通过与bussein的比较,单体a t 6 5.35和5-64可能分别归因于H-3和H-30。这留下了一个仲酯基团需要定位。有三条证据表明这是在C-14。(一)这是原子核中唯一剩下的酯会产生甲醇单线态的位置,除了 C-29,它被认为是未被取代的。(lH 和 13C n.m.r.;见上文)。(b)剩余单线态(6 6-74)的化学位移异常大,表明位于羰基旁边。(c) 通常的C-15质子。信号(utilin,6 3.35 和 2.53,J 19 Hz)在 procerin 中不存在,尽管这也可能是由于内酯环的打开。另一种可能性是酯位于 C-6,就像在许多已知的柠檬酰类化合物中一样。由于与H-5的弱偶联,这种替换在规范上产生了广泛的H-6单线态。6 6-74 处的单线透态比这要锋利得多,没有显示出弱耦合的迹象。此外,在 6 2-26 ( J 7 Hz) 处有一个双质子双峰,在 6 2-88 ( J 7 Hz) 处似乎有一个单质子三重态。尽管这些尚未被证明是偶联的,并且假定的三联体的一个带被类柠檬酮组和 C.O.C. (6a) 的 ABlactones 遮蔽,但与同一光谱中的其他单胞胎相比,H-17 引起的谐振特征性地加宽了腰部。在普罗塞林谱图中 6 5.80 处的条带以这种方式变宽,并且可以对应于 H-17,R'( 6 ) ( 7 ) .a;R = 0 一;R'=Pr' a n d Pr'CH2(混合物)R2= Ac, R3= Pr =1 2 3 b;R =我, R = H , R = H 2'7 b;R = H,p-OAcOH' I(8)单体更尖锐。在碳环 D 中的 6 3 4 区域中没有可检测到的信号可以分配给 H-17。6 5-80 对 H-17 的化学位移与内酯相似,并且需要 C-17 位点的酰氧基取代基,而不是醚 asin C.O.C. (6a)含有双环壬烷体系的甲基甲酯基团的衍生物通常具有 l-氧代基团。procerin 的 13C n.m.r. 光谱显示不存在酮体。唯一已知的没有 l-酮的天然双环壬烷是 1,29-环化合物组的成员,到目前为止,该化合物含有 utilin (la):entandrophragmin (1 b) 、l candollein (Ic) 、11J2 bussein(7a)、l3 和密切相关的 phragmalin.14 这一事实表明了这种桥在 procerin 中的先行性,因为只有三个核甲基显示 1H n.m.r.光谱,而不是甲基甲酸盐中通常的四个。它由procerin的13C n.m.r.谱图支持,该谱图在细节上与utilin和bussein水解产物乙酸甲酯(7b)相似,特别是在38.6 p.p.m.处显示出三重态,这可能归因于该桥环结构中的C-29(cj.utilin,40.0;bussein,39.9 p.p.m.)。lH n.m.r.光谱中的双峰(6 3.04和2-74,J 13 Hz)可归因于N中的两个C-29质子。S. Ohochuku 和 J. W. Powell, Chem. Comm., 1966, 422.11 G. A. Adesida 和 D. A. H. Taylor, Phytochemistry, 1967, 8,1429.l2 K. Wragg, unpublished results.l3 R.Hanni and Ch. Tamm, J.C.S. Chem. Comm., 1972, 1253.l4 R. R. Arndt and W. H. Barschers, Tetrahedron, 1972, 28,23331974系统归因于29-H,,这些对应于6-H的定位,, 5-H体系在多甲基甲酯衍生物的光谱中。我们认为叔乙酸酯更可能在C-2处,而叔羟基在C-1处,基于空间位阻,并且因为2-乙酰衍生物是已知的,例如2-乙酰氧基裂纤内酯.8没有证据表明丙酸酯系统位于何处。鉴于在C-3处具有更复杂酯基团的天然产物和其他位置的乙酸酯(例如utilin,bussein和甲基30-乙酰氧基-3P-异丁基-l-氧代酸酯15)的数量,丙酸盐可能更可能在C-3处。因此,我们认为 procerin 由结构 (8) 表示,其中酰基最有可能分布如图所示。基于这种结构的普罗塞林13C n.m.r.谱图的分配包括在表2.EXPERIMENTALIsoY'ation of Procerin.-用回流轻质石油(b.p.60-80°)提取Carapa proceya(10 kg)的碾碎树皮。从冷浓缩提取物中析出的固体从甲醇重结晶得到混合物(130毫克),熔点260-270“,在进一步结晶时不分离。这个(70毫克)由t.1.c.好心地分开。由 J. D. Corinolly 博士提供 procerin (43 mg) 和第二种化合物 (24 mg)。以前提取的 Cnrupa 树皮只给了 procerin。由甲醇制成的丙塞林具有 m.p.296-301“,8~ (CDC1,;60 和 100 MHz) 7-64 和 7-39 (in, 2 x a-furan)、6.74(s)、6-46 (m, p-furan)、5-80(s)、5-64(s)、5.35(s)、3.9 (s, OH)、3-72(s) 和 3.66(s) (2 x OMe)、3.04 和 2-74 (dd, J 13 Hz)、2.86 (t, J 8 Hz)、2.26 (2H、d、J 8 Hz)、2.36、2.15 (6H)、 2.05,1-82,1.26和0.82(所有s,8 x CMe tert.)和1.15(t,J 7.5Hz,CMe初级)(发现:lMf,848.3099.计算为C4,HK2Ol,:M,848-3103)。第二种化合物,m.p.285-288“,具有M+ 424(可能是C,,H,,O,)。定量水解Procerin.-Procerin(13.7 mg)溶于甲醇(10 ml)和0.1~-氢氧化钠(10ml)回流0.5h。对0.1N-盐酸水溶液(酚酞;8.需要 7 ml)显示每 mol procerin 产生 8.06 mol 酸。溶液用more0-1N-盐酸(共10ml)处理,蒸馏至干。残留物用水(10ml)处理,并再次蒸馏干。用0.0 1N-氢氧化钠(酚酞)滴定合并馏出物需要8-1毫升,相当于每摩尔丙色林产生5-01摩尔挥发酸。将滴定中和的溶液蒸发至干,并将残留物溶解在D,O.lH N.m.r.溶液的光谱检查中,发现乙酸和丙酸的比例为10:1.我感谢S.R.C.为13C n.m.r.研究提供资助,并感谢S.R.C.为13C n.m.r.研究提供资助。F. W. Wehrli 在分配光谱方面提供建议和帮助。[3/1586 收稿日期, 27th J d y , 19731l5 D. A. H. Taylor, J . Chem. SOC. (C), 1969, 2439

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号