...
首页> 外文期刊>Water Science and Technology >Application of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for diclofenac adsorption: isotherm, kinetic and thermodynamic investigation
【24h】

Application of Ni0.5Zn0.5Fe2O4 magnetic nanoparticles for diclofenac adsorption: isotherm, kinetic and thermodynamic investigation

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Ni0.5Zn0.5Fe2O4 magnetic nanoparticles were synthesized to obtain a new efficient adsorbent for diclofenac sodium (DF) removal. Fourier Transform Infrared (FTIR), Energy Dispersive Spectrometer (EDS), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and vibrating sample magnetometer (VSM) were applied to characterize the prepared adsorbent. These analyses revealed that adsorbent was successfully prepared with average particle diameter of about 50 nm and a BET surface area of 168.09 m(2)/g. The saturation magnetization value of magnetic nanoparticles (MNPs) was found to be 24.90 emu/g, thus, adsorbent was efficiently separated from the solution by a facile and rapid magnetic separation process. The effect of adsorption time, amount of adsorbent, initial pH of the solution, initial diclofenac concentration and temperature on the removal of DF were evaluated. Also, the adsorption data were best fitted to the pseudo-first-order kinetic model and Langmuir isotherm model. The thermodynamics studies suggested spontaneous and exothermic adsorption. The maximum diclofenac adsorption amount of the synthesized nanoadsorbent was 52.91 mg/g, which is higher than many recently studied adsorbents.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号