...
首页> 外文期刊>Foundations of Physics: An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics, Biophysics & Cosmology >Condensates in the cosmos: Quantum stabilization of the collapse of relativistic degenerate stars to black holes
【24h】

Condensates in the cosmos: Quantum stabilization of the collapse of relativistic degenerate stars to black holes

机译:宇宙中的凝结:相对论简并恒星坍缩至黑洞的量子稳定

获取原文
获取原文并翻译 | 示例
           

摘要

According to prevailing theory, relativistic degenerate stars with masses beyond the Chandrasekhar and Oppenheimer-Volkoff (OV) limits cannot achieve hydrostatic equilibrium through either electron or neutron degeneracy pressure and must collapse to form stellar black holes. In such end states, all matter and energy within the Schwarzschild horizon descend into a central singularity. Avoidance of this fate is a hoped-for outcome of the quantization of gravity, an as-yet incomplete undertaking. Recent studies, however, suggest the possibility that known quantum processes may intervene to arrest complete collapse, thereby leading to equilibrium states of macroscopic size and finite density. I describe here one such process which entails pairing (or other even-numbered association) of neutrons (or constituent quarks in the event of nucleon disruption) to form a condensate of composite bosons in equilibrium with a core of degenerate fermions. This process is analogous to, but not identical with, the formation of hadron Cooper pairs that give rise to neutron superfluidity and proton superconductivity in neutron stars. Fermion condensation to composite bosons in a star otherwise destined to collapse to a black hole facilitates hydrostatic equilibrium in at least two ways: (1) removal of fermions results in a decrease in the Fermi level which stiffens the dependence of degeneracy pressure on fermion density, and (2) phase separation into a fermionic core surrounded by a self-gravitating condensate diminishes the weight which must be balanced by fermion degeneracy pressure. The outcome is neither a black hole nor a neutron star, but a novel end state, a "fermicon star," with unusual physical properties.
机译:根据流行理论,相对论简并质量超过钱德拉塞卡(Chandrasekhar)和奥本海默-伏尔科夫(Oppenheimer-Volkoff(OV))极限的恒星无法通过电子或中子简并压力达到静水平衡,并且必须塌缩以形成恒星黑洞。在这种最终状态下,施瓦茨希尔德视界内的所有物质和能量都下降为中心奇点。避免这种命运是引力量化的希望结果,这是迄今为止尚未完成的任务。但是,最近的研究表明,已知的量子过程可能会介入以阻止完全崩溃,从而导致宏观尺寸和有限密度的平衡状态。我在这里描述了一种这样的过程,该过程需要中子(或在核子破裂的情况下构成夸克)成对(或其他偶数个缔合)配对,以与简并的费米子核平衡形成复合玻色子的冷凝物。该过程类似于但不等同于强子库珀对的形成,后者在中子星中引起中子超流动性和质子超导性。费米子在恒星中凝结到复合玻色子上,否则注定会坍塌成黑洞,至少可以通过两种方式促进静水力平衡:(1)去除费米子会降低费米能级,从而加剧了简并压力对费米子密度的依赖性, (2)相分离成由自重冷凝物包围的铁离子核,减小了必须由铁离子简并压力平衡的重量。结果既不是黑洞也不是中子星,而是新的最终状态,即“费米肯星”,具有不寻常的物理特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号