...
首页> 外文期刊>Flow, turbulence and combustion >Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: Quality and error assessment
【24h】

Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: Quality and error assessment

机译:三角稳定的稀薄预混湍流火焰的大涡模拟:质量和误差评估

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this numerical study, an algebraic flame surface wrinkling (AFSW) reaction submodel based on the progress variable approach is implemented in the large-eddy simulation (LES) context and validated against the triangular stabilized bluff body flame configuration measurements i.e. in VOLVO test rig. The quantitative predictability of the AFSW model is analyzed in comparison with another well validated turbulent flame speed closure (TFC) combustion model in order to help assess the behaviour of the present model and to further help improve the understanding of the flow and flame dynamics. Characterization of non-reacting (or cold) and reacting flows are performed using various subgrid scale models for consistent grid size variation with 300,000 (coarse), 1.2 million (intermediate) and 2.4 million (fine) grid cells. For non-reacting flows at inlet velocity of 17 m/s and inlet temperature 288 K, coarse grid leads to over prediction of turbulence quantities due to low dissipation at the early stage of flow development behind the bluff body that convects downstream eventually polluting the resulting solution. The simulated results with the intermediate (and fine) grid for mean flow and turbulence quantities, and the vortex shedding frequency (f _s) closely match experimental data. For combusting flows for lean propane/air mixtures at 35 m/s and 600 K, the vortex shedding frequency increase threefold compared with cold scenario. The predicted results of mean, rms velocities and reaction progress variable are generally in good agreement with experimental data. For the coarse grid the combustion predictions show a shorter recirculation region due to higher turbulent burning rate. Finally, both cold and reacting LES data are analyzed for uncertainty in the solution using two quality assessment techniques: two-grid estimator by Celik, and model and grid variation by Klein. For both approaches, the resolved turbulent kinetic energy is used to estimate the grid quality and error assessment. The quality assessment reveals that the cold flows are well resolved even on the intermediate mesh, while for the reacting flows even the fine mesh is locally not sufficient in the flamelet region. The Klein approach estimates that depending on the recirculation region in cold scenario both numerical andmodel errors rise near the bluff-body region, while in combusting flows these errors are significant behind the stabilizing point due to preheating of unburned mixture and reaction heat release. The total error mainly depends on the numerical error and the influence of model error is low for this configuration.
机译:在此数值研究中,在大涡模拟(LES)上下文中实现了基于进度变量方法的代数火焰表面起皱(AFSW)反应子模型,并针对三角形稳定的钝体火焰构造测量(即在VOLVO测试台中)进行了验证。与另一种经过充分验证的湍流火焰速度闭合(TFC)燃烧模型相比较,分析了AFSW模型的定量可预测性,以帮助评估当前模型的行为并进一步帮助提高对流动和火焰动力学的理解。使用各种亚网格规模模型对非反应(或冷)和反应流进行表征,以实现具有300,000(粗),120万(中级)和240万(细)网格单元的一致网格尺寸变化。对于入口速度为17 m / s且入口温度为288 K的非反应流,粗略的网格会导致湍流量的过度预测,这是由于在钝体后面的流体发展的早期阶段的低耗散导致对流,最终使对流最终污染了最终结果解。使用中间(精细)网格的平均流量和湍流量以及涡旋脱落频率(f _s)的模拟结果与实验数据非常吻合。对于35 m / s和600 K的稀丙烷/空气混合物的燃烧流,与寒冷情景相比,涡旋脱落频率增加了三倍。平均,均方根速度和反应进程变量的预测结果与实验数据基本吻合。对于粗糙的格栅,由于较高的湍流燃烧速率,燃烧预测显示出较短的再循环区域。最后,使用两种质量评估技术对冷数据和反应性LES数据进行分析,以确定解决方案中的不确定性:Celik的两网格估计器和Klein的模型和网格变化。对于这两种方法,都使用解析的湍动能来估计网格质量和误差评估。质量评估表明,即使在中间网孔上,冷流也得到很好的解决,而对于反应流,即使细网孔在小火焰区域中局部不足。 Klein方法估计,在寒冷情况下,取决于回流区域,数值和模型误差都会在钝体区域附近上升,而在燃烧流中,由于未燃烧混合物的预热和反应放热,这些误差在稳定点之后非常明显。总误差主要取决于数值误差,并且对于这种配置,模型误差的影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号