...
首页> 外文期刊>IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society >Statistical Framework for Optimization in the Multi-User MIMO Uplink With ZF-DFE
【24h】

Statistical Framework for Optimization in the Multi-User MIMO Uplink With ZF-DFE

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We consider performance optimization in the uplink of a multiuser multiantenna communication system. Each user multiplexes data onto several independently encoded data streams, which are spatially precoded and conveyed over a fading narrowband multiple-input multiple-output (MIMO) channel. All users' data streams are decoded successively at the receiving base station using zero-forcing decision feedback equalization (ZF-DFE). We target the joint optimization of a decoding order and linear precoders for all users based on long-term channel information. For a class of general MIMO channel models, including the separable-correlation and double-scattering models, we show that the choice of precoder for a certain user does not affect the performance of the others. This leads to a particularly straightforward characterization of general user utility regions as a polyblock, or a convex polytope if time-sharing is allowed. We formulate the decoding-ordering problem under transmit-correlated Rayleigh fading as a linear assignment problem, enabling the use of existing efficient algorithms. Combining decoding ordering with single-user precoder optimization by means of alternating optimization, we propose an efficient iterative scheme that is verified numerically to converge fast and perform close to optimally, successfully reaping the benefits of both precoding and ordering in the MIMO uplink.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号