...
首页> 外文期刊>IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society >Efficient Closed-Form Algorithms for AOA Based Self-Localization of Sensor Nodes Using Auxiliary Variables
【24h】

Efficient Closed-Form Algorithms for AOA Based Self-Localization of Sensor Nodes Using Auxiliary Variables

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Node self-localization is a key research topic for wireless sensor networks (WSNs). There are two main algorithms, the triangulation method and the maximum likelihood (ML) estimator, for angle of arrival (AOA) based self-localization. The ML estimator requires a good initialization close to the true location to avoid divergence, while the triangulation method cannot obtain the closed-form solution with high efficiency. In this paper, we develop a set of efficient closed-form AOA based self-localization algorithms using auxiliary variables based methods. First, we formulate the self-localization problem as a linear least squares problem using auxiliary variables. Based on its closed-form solution, a new auxiliary variables based pseudo-linear estimator (AVPLE) is developed. By analyzing its estimation error, we present a bias compensated AVPLE (BCAVPLE) to reduce the estimation error. Then we develop a novel BCAVPLE based weighted instrumental variable (BCAVPLE-WIV) estimator to achieve asymptotically unbiased estimation of locations and orientations of unknown nodes based on prior knowledge of the AOA noise variance. In the case that the AOA noise variance is unknown, a new AVPLE based WIV (AVPLE-WIV) estimator is developed to localize the unknown nodes. Also, we develop an autonomous coordinate rotation (ACR) method to overcome the tangent instability of the proposed algorithms when the orientation of the unknown node is near π/2. We also derive the Cramer-Rao lower bound (CRLB) of the ML estimator. Extensive simulations demonstrate that the new algorithms achieve much higher localization accuracy than the triangulation method and avoid local minima and divergence in iterative ML estimators.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号