首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Use of refraction, reflection, and wave-equation-based tomography for imaging beneath shallow gas: A Trinidad field data example
【24h】

Use of refraction, reflection, and wave-equation-based tomography for imaging beneath shallow gas: A Trinidad field data example

机译:折射,反射和基于波方程的层析成像技术在浅层气体下的成像:千里达野外数据示例

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Shallow localized gas pockets cause challenging problems in seismic imaging because of sags and wipe-out zones they produce on imaged reflectors deep in the section. In addition, the presence of shallow gas generates strong surface-related and interbed multiples, making velocity updating very difficult. When localized gas pockets are very shallow, we have limited information to build a near-surface velocity model using ray-based reflection tomography alone. Diving-wave refraction tomography successfully builds a starting model for the very shallow part. Usual ray-based reflection tomography using single-parameter hyperbolic moveout might need many iterations to update the deeper part of the velocity model. In addition, the method generates a low-velocity anomaly in the deeper part of the model. We present an innovative method for building the final velocity model by combining refraction, reflection, and wave-equation-based tomography. Wave-equation-based tomography effectively generates a detailed update of a shallow velocity field, resolving the gas-sag problem. When applied as the last step, following the refraction and reflection tomography, it resolves the gas-sag problem but fails to remove the low-velocity anomaly generated by the reflection tomography in the deeper part of the model. To improve the methodology, we update the shallow velocity field using refraction tomography followed by wave-equation tomography before updating the deeper part of the model. This step avoids generating the low-velocity anomaly. Refraction and wave-equation-based tomography followed by reflection tomography generates a simpler velocity model, giving better focusing in the deeper part of the image. We illustrate how the methodology successfully improves resolution of gas anomalies and significantly reduces gas sag from an imaged section in the Greater Cassia area, Trinidad.
机译:浅的局部气穴会在地震成像中带来挑战性的问题,因为它们会在截面深处的成像反射器上产生下垂和擦拭区。此外,浅层气体的存在会产生很强的与表面有关的和互层的倍数,使速度更新非常困难。当局部气穴非常浅时,仅使用基于射线的反射层析成像技术建立近地表速度模型的信息有限。潜水波折射层析成像技术成功地为非常浅的部分建立了初始模型。通常使用单参数双曲线偏移的基于射线的反射层析成像可能需要多次迭代才能更新速度模型的更深部分。另外,该方法在模型的较深部分产生了低速异常。我们提出了一种通过结合折射,反射和基于波方程的层析成像技术来构建最终速度模型的创新方法。基于波方程的断层扫描有效地生成了较浅速度场的详细更新,从而解决了气垂问题。在折射和反射层析成像之后作为最后一步应用时,它可以解决气体下垂问题,但无法消除模型较深部分的反射层析成像所产生的低速异常。为了改进方法,在更新模型的更深部分之前,我们先使用折射层析成像技术先更新浅层速度场,然后再进行波方程层析成像。该步骤避免了产生低速异常。基于折射和波方程的层析成像技术,再加上反射层析成像技术,可以生成更简单的速度模型,从而可以更好地聚焦于图像的较深部分。我们从特立尼达大卡西亚地区的成像剖面中说明了该方法是如何成功改善瓦斯异常的分辨率并显着减少瓦斯流挂的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号