...
首页> 外文期刊>IEEE transactions on automation science and engineering: a publication of the IEEE Robotics and Automation Society >Path-Constrained and Collision-Free Optimal Trajectory Planning for Robot Manipulators
【24h】

Path-Constrained and Collision-Free Optimal Trajectory Planning for Robot Manipulators

机译:机器人机械手的路径约束和无碰撞最优轨迹规划

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a novel path-constrained and collision-free optimal trajectory planning algorithm for robot manipulators in the presence of obstacles for the following problem: Given a desired sequence of discrete waypoints of robot configurations, a set of robot kinematic and dynamic constraints, and a set of obstacles, determine a time and jerk optimal and collision-free trajectory for the robot passing through the given waypoints. Our approach in developing the robot path through the waypoints relies on the orthogonal collocation method where the states are represented with Legendre polynomials in the Barycentric form; the transcription process efficiently converts the continuous-time formulation of the optimal control problem into a discrete non-linear program. In addition, we provide an efficient method for avoiding robot self-collisions (of joints and links) and collisions with workspace obstacles by modeling them as the union of spheres and cylinders in the workspace. The resulting collision free optimal trajectory provides smooth and constrained motion for the robot passing through all the waypoints in the given prescribed sequence with a constant speed. The proposed method is validated using numerical simulations and experiments on a six degree-of-freedom robot. Note to Practitioners—This paper is motivated by planning collision-free optimal trajectories with constant Cartesian speed (norm of translation velocity) along a given list of waypoints. The primary applications include developing constant Cartesian speed trajectories for robotic surface finishing operations, spray painting operations and robot endurance testing. Sampling-based motion planning algorithms have been widely used for their high efficiency and robustness. However, those methods in general do not take into account the joint level constraints, motion jerk, robot dynamic model and kinematic constraints together. In addition, with these algorithms, it is difficult to generate a trajectory along a list of waypoints while maintaining a constant Cartesian speed. We provide an efficient robot trajectory planning algorithm for articulated robots that is capable of achieving time and jerk optimality while avoiding obstacles and satisfying robot kinematic and dynamic constraints. The scope of this work is limited to considering only static obstacles and pre-defined Cartesian waypoints; potential extensions include consideration of dynamic obstacles and incorporating tighter bounds for objects modeled by cylinders and spheres so that a larger workspace is available for trajectory planning, etc.
机译:在本文中,我们针对以下问题,为机器人机械手开发了一种新型的路径约束和无碰撞最优轨迹规划算法:给定机器人配置的离散航点的所需序列,一组机器人运动学和动态约束以及一组障碍物,确定机器人通过给定航点的时间和混沌最优且无碰撞的轨迹。我们开发通过航点的机器人路径的方法依赖于正交搭配方法,其中状态用重心形式的勒让德多项式表示;转录过程有效地将最优控制问题的连续时间公式转换为离散的非线性程序。此外,我们还提供了一种有效的方法,通过将机器人建模为工作空间中球体和圆柱体的并集,来避免机器人自碰撞(关节和连杆)以及与工作空间障碍物的碰撞。由此产生的无碰撞最佳轨迹为机器人以恒定速度以给定的规定顺序通过所有航点提供了平稳和受约束的运动。在六自由度机器人上通过数值模拟和实验验证了所提方法。从业者须知 - 本文的动机是沿着给定的航点列表规划具有恒定笛卡尔速度(平移速度范数)的无碰撞最佳轨迹。主要应用包括开发恒定的笛卡尔速度轨迹,用于机器人表面处理操作、喷漆操作和机器人耐久性测试。基于采样的运动规划算法因其高效率和鲁棒性而被广泛应用。然而,这些方法通常没有同时考虑关节水平约束、运动颠簸、机器人动态模型和运动学约束。此外,使用这些算法,很难在保持恒定笛卡尔速度的同时沿航点列表生成轨迹。我们为铰接式机器人提供了一种高效的机器人轨迹规划算法,该算法能够实现时间和推举最优,同时避开障碍物并满足机器人的运动学和动态约束。这项工作的范围仅限于考虑静态障碍物和预定义的笛卡尔航点;可能的扩展包括考虑动态障碍物,并为圆柱体和球体建模的对象纳入更严格的边界,以便为轨迹规划提供更大的工作空间等。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号