...
首页> 外文期刊>biomolecules >Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity
【24h】

Dual Role for Astroglial Copper-Assisted Polyamine Metabolism during Intense Network Activity

机译:星形胶质细胞铜辅助多胺代谢在高强度网络活动期间的双重作用

获取原文
获取原文并翻译 | 示例

摘要

Astrocytes serve essential roles in human brain function and diseases. Growing evidence indicates that astrocytes are central players of the feedback modulation of excitatory Glu signalling during epileptiform activity via Glu-GABA exchange. The underlying mechanism results in the increase of tonic inhibition by reverse operation of the astroglial GABA transporter, induced by Glu-Na+ symport. GABA, released from astrocytes, is synthesized from the polyamine (PA) putrescine and this process involves copper amino oxidase. Through this pathway, putrescine can be considered as an important source of inhibitory signaling that counterbalances epileptic discharges. Putrescine, however, is also a precursor for spermine that is known to enhance gap junction channel communication and, consequently, supports long-range Ca2+ signaling and contributes to spreading of excitatory activity through the astrocytic syncytium. Recently, we presented the possibility of neuron-glia redox coupling through copper (Cu+/Cu2+) signaling and oxidative putrescine catabolism. In the current work, we explore whether the Cu+/Cu2+ homeostasis is involved in astrocytic control on neuronal excitability by regulating PA catabolism. We provide supporting experimental data underlying this hypothesis. We show that the blockade of copper transporter (CTR1) by AgNO3 (3.6 mu M) prevents GABA transporter-mediated tonic inhibitory currents, indicating causal relationship between copper (Cu+/Cu2+) uptake and the catabolism of putrescine to GABA in astrocytes. In addition, we show that MnCl2 (20 mu M), an inhibitor of the divalent metal transporter DMT1, also prevents the astrocytic Glu-GABA exchange. Furthermore, we observed that facilitation of copper uptake by added CuCl2 (2 mu M) boosts tonic inhibitory currents. These findings corroborate the hypothesis that modulation of neuron-glia coupling by copper uptake drives putrescine -> GABA transformation, which leads to subsequent Glu-GABA exchange and tonic inhibition. Findings may in turn highlight the potential role of copper signaling in fine-tuning the activity of the tripartite synapse.
机译:星形胶质细胞在人脑功能和疾病中起着至关重要的作用。越来越多的证据表明,星形胶质细胞是通过 Glu-GABA 交换在癫痫样活动期间对兴奋性 Glu 信号进行反馈调节的核心参与者。潜在机制导致通过Glu-Na+同向诱导的星形胶质细胞GABA转运蛋白的反向操作增加强直抑制。从星形胶质细胞中释放的GABA是由多胺(PA)腐胺合成的,该过程涉及铜氨基氧化酶。通过该途径,腐胺可以被认为是抑制性信号的重要来源,可抵消癫痫放电。然而,腐胺也是精胺的前体,已知精胺可增强间隙连接通道通讯,因此支持长程 Ca2+ 信号传导并有助于通过星形胶质细胞合胞体传播兴奋活性。最近,我们提出了通过铜(Cu+/Cu2+)信号传导和氧化腐烂分解代谢进行神经元-神经胶质氧化还原偶联的可能性。在目前的研究中,我们探讨了Cu+/Cu2+稳态是否通过调节PA分解代谢参与星形胶质细胞对神经元兴奋性的控制。我们提供了支持这一假设的实验数据。结果表明,AgNO3 (3.6 μ M)阻止GABA转运蛋白介导的强直抑制电流,表明铜(Cu+/Cu2+)摄取与星形胶质细胞中腐胺分解代谢为GABA之间存在因果关系。此外,我们发现二价金属转运蛋白DMT1的抑制剂MnCl2(20μM)也阻止了星形胶质细胞Glu-GABA交换。此外,我们观察到,通过添加 CuCl2 (2 μ M) 促进铜的吸收会增强强直抑制电流。这些发现证实了铜摄取对神经元-胶质细胞偶联的调节驱动腐胺->GABA转化的假设,从而导致随后的Glu-GABA交换和强直抑制。研究结果可能反过来强调铜信号在微调三方突触活动方面的潜在作用。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号