...
首页> 外文期刊>catalysts >Effective Removal of Refractory Pollutants through Cinnamic Acid-Modified Wheat Husk Biochar: Experimental and DFT-Based Analysis
【24h】

Effective Removal of Refractory Pollutants through Cinnamic Acid-Modified Wheat Husk Biochar: Experimental and DFT-Based Analysis

机译:

获取原文
获取原文并翻译 | 示例

摘要

The removal of refractory pollutants, i.e., methylene blue (MB) and ciprofloxacin (CIP), relies heavily on sorption technologies to address global demands for ongoing access to clean water. Because of the poor adsorbent-pollutant contact, traditional sorption procedures are inefficient. To accomplish this, a wheat husk biochar (WHB), loaded with cinnamic acid, was created using a simple intercalation approach to collect dangerous organic pollutants from an aqueous solution. Batch experiments, detecting technologies, and density functional theory (DFT) calculations were used to investigate the interactions at the wheat husk biochar modified with cinnamic acid (WHB/CA) and water interface to learn more about the removal mechanisms. With MB (96.52) and CIP (94.03), the functionalized WHB exhibited outstanding adsorption capabilities, with model fitting results revealing that the adsorption process was chemisorption and monolayer contact. Furthermore, DFT studies were performed to evaluate the interfacial interaction between MB and CIP with the WHB/CA surface. The orbital interaction diagram provided a visual representation of the interaction mechanism. These findings open up a new avenue for researchers to better understand adsorption behavior for the utilization of WHB on an industrial scale.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号