首页> 外文期刊>Steel & Composite Structures: An International Journal >Seismic performance of steel columns corroded in general atmosphere
【24h】

Seismic performance of steel columns corroded in general atmosphere

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

Steel structures exposed to general atmosphere for a long time are highly susceptible to corrosion damage, which would lead to the degradation of service performance of the components and even structures. This article focuses on the effect of corrosion on the seismic performance of steel column. The accelerated corrosion tests in general atmosphere were conducted on 7 H-shaped steel columns and 20 steel plates. Then the obtained plate specimens were subjected to monotonic tensile tests and cyclic loading tests, and the steel columns were subjected to pseudo-static tests, respectively, to study the effects of corrosion on their mechanical properties and seismic performance. Then, a simplified three-dimensional finite element model (FEM) capable of accurately simulating the hysteretic response of corroded steel columns under low-cycle loading was established. Experimental results indicated that the yield strength, tensile strength, elastic modulus and peak strain of corroded steel plate decreased linearly with the proposed corrosion damage parameter D-n, and the energy dissipations under low-cycle loading were significantly reduced. There is a correlation between the cyclic hardening parameters of corroded steel and the yield-tensile strength difference (SD), and then a simplified formula was proposed. Corrosion could result in the premature entrance of each loading stage of corroded columns and the deterioration of buckling deformation range, bearing capacity and energy dissipation, etc. In addition, a larger axial compression ratio (CR) would further accelerate the failure process of corroded columns. The parametric finite element analysis (FEA) indicated that greater damage was found for steel columns with non-uniform corrosion, and hysteretic performance degraded more significantly when corrosion distributed at flanges or foot zone.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号