...
首页> 外文期刊>Numerical Heat Transfer, Part B. Fundamentals: An International Journal of Computation and Methodology >Flow and heat transfer characteristics of droplet obliquely impact on a stationary liquid film
【24h】

Flow and heat transfer characteristics of droplet obliquely impact on a stationary liquid film

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

The flow and heat transfer characteristics of a droplet obliquely impact on a stationary liquid film is numerically studied by using a coupled level set and volume of fluid method (CLSVOF). The effects of impact angle, Weber number, and film thickness are analyzed. As compared with the normal impact, the flow features and surface heat flux distribution for oblique impact are asymmetric and where the secondary droplets only can be observed on one side. Corresponding mechanisms have also been interpreted. The maximum value of the local surface heat flux decreases and moves to the right with the increase in impact angle, while the minimum local surface heat flux on both sides increases as the impact angle increases. With a greater Weber number or a thinner film thickness, the maximum local surface heat flux is higher, while the minimum local surface heat flux on both sides appears to be an opposite trend. In addition, the impact angle has little effect on the average surface heat flux.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号