...
首页> 外文期刊>frontiers of chemical science and engineering >Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance
【24h】

Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

The massive conversion of resourceful biomass to carbon nanomaterials not only opens a new avenue to effective and economical disposal of biomass, but provides a possibility to produce highly valued functionalized carbon-based electrodes for energy storage and conversion systems. In this work, biomass is applied to a facile and scalable one-step pyrolysis method to prepare three-dimensional (3D) carbon nanotubes/mesoporous carbon architecture, which uses transition metal inorganic salts and melamine as initial precursors. The role of each employed component is investigated, and the electrochemical performance of the attained product is explored. Each component and precise regulation of their dosage is proven to be the key to successful conversion of biomass to the desired carbon nanomaterials. Owing to the unique 3D architecture and integration of individual merits of carbon nanotubes and mesoporous carbon, the as-synthesized carbon nanotubes/mesoporous carbon hybrid exhibits versatile application toward lithium-ion batteries and Zn-air batteries. Apparently, a significant guidance on effective conversion of biomass to functionalized carbon nanomaterials can be shown by this work.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号