...
首页> 外文期刊>Hydrology and Earth System Sciences >A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
【24h】

A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada

机译:

获取原文
获取原文并翻译 | 示例
           

摘要

abstract_textpClassification and clustering approaches provide a means to group watersheds according to similar attributes, functions, or behaviours, and can aid in managing natural resources. Although they are widely used, approaches based on hydrological response parameters restrict analyses to regions where well-developed hydrological records exist, and overlook factors contributing to other management concerns, including biogeochemistry and ecology. In the Canadian Prairie, hydrometric gauging is sparse and often seasonal. Moreover, large areas are endorheic and the landscape is highly modified by human activity, complicating classification based solely on hydrological parameters. We compiled climate, geological, topographical, and land-cover data from the Prairie and conducted a classification of watersheds using a hierarchical clustering of principal components. Seven classes were identified based on the clustering of watersheds, including those distinguishing southern Manitoba, the pothole region, river valleys, and grasslands. Important defining variables were climate, elevation, surficial geology, wetland distribution, and land cover. In particular, three classes occur almost exclusively within regions that tend not to contribute to major river systems, and collectively encompass the majority of the study area. The gross difference in key characteristics across the classes suggests that future water management and climate change may carry with them heterogeneous sets of implications for water security across the Prairie. This emphasizes the importance of developing management strategies that target sub-regions expected to behave coherently as current human-induced changes to the landscape will affect how watersheds react to change. The study provides the first classification of watersheds within the Prairie based on climatic and biophysical attributes, with the framework used being applicable to other regions where hydrometric data are sparse. Our findings provide a foundation for addressing questions related to hydrological, biogeochemical, and ecological behaviours at a regional level, enhancing the capacity to address issues of water security./p/abstract_text

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号