...
首页> 外文期刊>Journal of environmental & engineering geophysics >Dominant higher surface-wave modes and possible inversion pitfalls
【24h】

Dominant higher surface-wave modes and possible inversion pitfalls

机译:占主导地位的高表面波模式和可能的反演陷阱

获取原文
获取原文并翻译 | 示例

摘要

Dominant higher modes of surface waves are known to be generated at sites with large stiffness contrasts and/or reversals between layers. At many engineering sites, quite often all modal energy is transferred to successively higher modes with increasing frequency. These 'jumps' may occur at low (20 Hz) to high (60 Hz) frequencies, and, more than once over the recorded bandwidth, but the common features are that the jumps are in amounts exceeding 50 of the phase velocity, and dispersion does not return to the fundamental mode at high frequency. A nonlinear geophone spacing helps to resolve these modes more uniquely.Full-wavefield synthetic seismogram modelling reinforces the effect to be due to a steep, nonlinear stiffness gradient in the uppermost 1-2 meters of soil. If a high-velocity substrate at depth is not present, the 'effective' phase velocity of the higher modes can exceed that of the maximum shear-wave velocity of the model, where leaky modes persist. When this happens, conventional modal dispersion modelling cannot be applied in the inversion. If an artificial stiff layer is added at depth, jumps across several modal boundaries can occur, which is also generated in a Gibson half-space, both at very low and high frequencies. This is a major pitfall, where mode-m is identification, especially at low frequency, can lead to errors in the estimated shear wave velocity models of over 50. Guided P-waves also manifest as large dispersion discontinuities, but usually at higher frequency and phase velocities, with buried explosive sources. Although Poisson's ratio has a strong influence of the generation of-and frequencies of transitions to-dominant higher modes, the higher-mode phase velocities themselves are relatively independent of shallow P-wave velocity.
机译:已知在层之间具有较大刚度对比和/或反转的地点会产生主要的高级表面波模式。在许多工程现场,通常所有模态能量都以越来越高的频率转移到更高的模态。这些“跳跃”可能发生在低频(20 Hz)到高频(60 Hz)频率下,并且在记录的带宽上不止一次发生,但共同特征是跳跃量超过相速度的50%,并且色散在高频下不会返回到基波模式。非线性地震检波器间距有助于更独特地解析这些模式。全波场合成地震图建模强化了由于最上层 1-2 米土壤中陡峭的非线性刚度梯度所致的效应。如果深度不存在高速基板,则较高模式的“有效”相速度可能超过模型的最大横波速度,其中泄漏模式仍然存在。当这种情况发生时,传统的模态色散建模不能应用于反演。如果在深度添加人工刚性层,则可能会发生跨越多个模态边界的跳跃,这也在吉布森半空间中产生,无论是在非常低的频率还是高频下。这是一个主要的缺陷,其中mode-m的识别,特别是在低频下,可能导致估计的横波速度模型误差超过50%。引导P波也表现为较大的色散不连续性,但通常在较高的频率和相位速度下,并埋藏着爆炸源。尽管泊松比对主要高模态的跃迁的产生和频率有很强的影响,但高模相速度本身相对独立于浅P波速度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号