...
首页> 外文期刊>Applied and Environmental Microbiology >Rapid detection of viable Salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification
【24h】

Rapid detection of viable Salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent outbreaks linked to Salmonella-contaminated produce heightened the need to develop simple, rapid, and accurate detection methods, particularly those capable of determining cell viability. In this study, we examined a novel strategy for the rapid detection and quantification of viable salmonellae in produce by coupling a simple propidium monoazide sample treatment with loop-mediated isothermal amplification (PMALAMP). We first designed and optimized a LAMP assay targeting Salmonella. Second, the performance of PMA-LAMP for detecting and quantifying viable salmonellae was determined. Finally, the assay was evaluated in experimentally contaminated produce items (cantaloupe, spinach, and tomato). Under the optimized condition, PMA-LAMP consistently gave negative results for heat-killed Salmonella cells with concentrations up to 10~8 CFU/ml (or CFU/g in produce). The detection limits of PMA-LAMP were 3.4 to 34 viable Salmonella cells in pure culture and 6.1 × 10~3 to 6.1 × 104 CFU/g in spiked produce samples. In comparison, PMA-PCR was up to 100-fold less sensitive. The correlation between LAMP time threshold (TT) values and viable Salmonella cell numbers was high (R~2 = 0.949 to 0.993), with a quantification range (102 to 105 CFU/reaction in pure culture and 104to 107 CFU/g in produce) comparable to that of PMA in combination with quantitative real-time PCR (PMA-qPCR). The complete PMA-LAMP assay took about 3 h to complete when testing produce samples. In conclusion, this rapid, accurate, and simple method to detect and quantify viable Salmonella cells in produce may present a useful tool for the produce industry to better control potential microbial hazards in produce.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号