...
首页> 外文期刊>New Zealand Journal of Crop and Horticultural Science >Predicting spatiotemporal yield variability to aid arable precision agriculture in New Zealand: a case study of maize-grain crop production in the Waikato region
【24h】

Predicting spatiotemporal yield variability to aid arable precision agriculture in New Zealand: a case study of maize-grain crop production in the Waikato region

机译:预测时空产量变化以帮助新西兰的耕作精准农业:怀卡托地区玉米谷物作物生产的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Precision agriculture manages within-field spatial variability by applying suitable inputs at the appropriate time, place, and amount. Delineation of field-specific management zones (MZs), representing significantly different yield potentials prescribe the rates of a specific crop inputs within-field. This paper examines multiple-year maize grain yield maps (2014, 2015, 2017 and 2018) and their spatial and temporal variability of within-field datasets (soil electrical conductivity EC, soil organic matter OM, and elevation) and climate data. The research was undertaken on a non-irrigated field at New Zealand's Foundation for Arable Research (FAR) in the Waikato region, to provide a simple, heuristic method to delineate dynamic MZs for crop inputs. Supervised statistical learning models (stepwise multiple linear regression SMLR, feedforward neural network (FFNN), classification and regression tree (CART), random forest (RF), extreme gradient boosting (XGBoost) and Cubist regression) were implemented to predict spatial yield. Prediction accuracies of the trained models were evaluated by withholding one subset of data for testing. For internal `split-sample' validation, CART, random forest and XGBoost produced slightly better statistical predictions (RMSE = 1.9-2.0 and R-2 = 0.60-0.63) than Cubist and FFNN (RMSE = 2.1-2.2 and R-2 = 0.52-0.57), whereas MLR produced the weakest prediction (RMSE = 2.3 and R-2 = 0.51). Spatial yield prediction of individual years, were poor (R-2 = 0.07-0.36). Input data used is readily and inexpensive for small arable fields in New Zealand. The methods presented, could be applied to a wider range of arable crops for within-field management inputs, to respond to spatially diverse soil texture distribution and variable rainfall patterns.
机译:精准农业通过在适当的时间、地点和数量应用适当的投入来管理田间空间变异性。划定田间管理区(MZs)代表着显著不同的产量潜力,规定了田间特定作物投入的速率。本文研究了多年玉米产量图(2014年、2015年、2017年和2018年)及其田间数据集(土壤电导率[EC]、土壤有机质[OM]和海拔)和气候数据的时空变化。该研究是在怀卡托地区的新西兰耕地研究基金会(FAR)的一个非灌溉田地上进行的,旨在提供一种简单的启发式方法来描绘作物投入的动态MZ。采用监督统计学习模型(逐步多元线性回归 [SMLR]、前馈神经网络 (FFNN)、分类回归树 (CART)、随机森林 (RF)、极端梯度提升 (XGBoost) 和 Cubist 回归)来预测空间产量。通过保留一个数据子集进行测试来评估训练模型的预测准确性。对于内部“拆分样本”验证,CART、随机森林和 XGBoost 产生的统计预测(RMSE = 1.9-2.0 和 R-2 = 0.60-0.63)略好于 Cubist 和 FFNN(RMSE = 2.1-2.2 和 R-2 = 0.52-0.57),而 MLR 产生的预测最弱(RMSE = 2.3 和 R-2 = 0.51)。个别年份的空间产量预测较差(R-2 = 0.07-0.36)。对于新西兰的小块耕地来说,使用的输入数据既容易又便宜。所提出的方法可以应用于更广泛的耕地作物,用于田间管理投入,以应对空间上多样化的土壤质地分布和可变的降雨模式。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号