首页> 外文期刊>Nanotechnology >Thermal transport and thermoelectric properties of beta-graphyne nanostructures
【24h】

Thermal transport and thermoelectric properties of beta-graphyne nanostructures

机译:β-石墨炔纳米结构的热输运和热电特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphyne, an allotrope of graphene, is currently a hot topic in the carbon-based nanomaterials research community. Taking beta-graphyne as an example, we performed a comprehensive study of thermal transport and related thermoelectric properties by means of nonequilibrium Green's function (NEGF). Our simulation demonstrated that thermal conductance of beta-graphyne is only approximately 26 of that of the graphene counterpart and also shows evident anisotropy. Meanwhile, thermal conductance of armchair beta-graphyne nanoribbons (A-BGYNRs) presents abnormal stepwise width dependence. As for the thermoelectric property, we found that zigzag beta-graphyne nanoribbons (Z-BGYNRs) possess superior thermoelectric performance with figure of merit value achieving 0.5 at room temperature, as compared with graphene nanoribbons (~0.05). Aiming at obtaining a better thermoelectric coefficient, we also investigated ZBGYNRs with geometric modulations. The results show that the thermoelectric performance can be enhanced dramatically (figure of merit exceeding 1.5 at room temperature), and such enhancement strongly depends on the width of the nanoribbons and location and quantity of geometric modulation. Our findings shed light on transport properties of beta-graphyne as high efficiency thermoelectrics. We anticipate that our simulation results could offer useful guidance for the design and fabrication of future thermoelectric devices.
机译:石墨炔是石墨烯的同素异形体,是目前碳基纳米材料研究界的热门话题。以β-石墨炔为例,利用非平衡格林函数(NEGF)对热输运及相关热电性能进行了全面研究。我们的模拟表明,β-石墨炔的热导率仅为石墨烯对应物的26%左右,并且还显示出明显的各向异性。同时,扶手椅β-石墨炔纳米带(A-BGYNRs)的热导率呈现异常的逐步宽度依赖性。在热电性能方面,与石墨烯纳米带(~0.05)相比,锯齿形β-石墨炔纳米带(Z-BGYNRs)具有优异的热电性能,在室温下品质因数达到0.5。为了获得更好的热电系数,我们还研究了具有几何调制的ZBGYNRs。结果表明,热电性能可以显著提高(室温下品质因数超过1.5),而这种增强在很大程度上取决于纳米带的宽度以及几何调制的位置和数量。我们的研究结果揭示了β-石墨炔作为高效热电材料的传输特性。我们预计我们的仿真结果可以为未来热电器件的设计和制造提供有用的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号