...
【24h】

An incremental neural learning framework and its application to vehicle diagnostics

机译:增量神经学习框架及其在车辆诊断中的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a framework for incremental neural learning (INL) that allows a base neural learning system to incrementally learn new knowledge from only new data without forgetting the existing knowledge. Upon subsequent encounters of new data examples, INL utilizes prior knowledge to direct its incremental learning. A number of critical issues are addressed including when to make the system learn new knowledge, how to learn new knowledge without forgetting existing knowledge, how to perform inference using both the existing and the newly learnt knowledge, and how to detect and deal with aged learnt systems. To validate the proposed INL framework, we use backpropagation (BP) as a base learner and a multi-layer neural network as a base intelligent system. INL has several advantages over existing incremental algorithms: it can be applied to a broad range of neural network systems beyond the BP trained neural networks; it retains the existing neural network structures and weights even during incremental learning; the neural network committees generated by INL do not interact with one another and each sees the same inputs and error signals at the same time; this limited communication makes the INL architecture attractive for parallel implementation. We have applied INL to two vehicle fault diagnostics problems: end-of-line test in auto assembly plants and onboard vehicle misfire detection. These experimental results demonstrate that the INL framework has the capability to successfully perform incremental learning from unbalanced and noisy data. In order to show the general capabilities of INL, we also applied INL to three general machine learning benchmark data sets. The INL systems showed good generalization capabilities in comparison with other well known machine learning algorithms.
机译:本文提出了一种增量神经学习(INL)框架,该框架允许基础神经学习系统仅从新数据中增量学习新知识,而不会忘记现有知识。在随后遇到新数据示例时,INL利用现有知识来指导其增量学习。解决了许多关键问题,包括何时使系统学习新知识,如何在不忘记现有知识的情况下学习新知识,如何使用现有知识和新学习知识进行推理以及如何检测和处理老龄化学习者系统。为了验证所提出的INL框架,我们使用反向传播(BP)作为基础学习器,并使用多层神经网络作为基础智能系统。与现有的增量算法相比,INL具有多个优点:它可以应用于BP训练的神经网络以外的广泛的神经网络系统;即使在增量学习中,它也保留了现有的神经网络结构和权重; INL产生的神经网络委员会彼此不交互,并且每个人都同时看到相同的输入和错误信号;这种有限的通信使INL体系结构对并行实现具有吸引力。我们已将INL应用于两个车辆故障诊断问题:自动装配厂的线下测试和车载失火检测。这些实验结果表明,INL框架具有从不平衡且嘈杂的数据成功执行增量学习的能力。为了展示INL的一般功能,我们还将INL应用于三个通用的机器学习基准数据集。与其他知名的机器学习算法相比,INL系统具有良好的泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号