...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Polarography of some arylazothiohydantoin derivatives
【24h】

Polarography of some arylazothiohydantoin derivatives

机译:一些芳基硫代乙内酰脲衍生物的极谱法

获取原文
           

摘要

J.C.S. Perkin I1 Polarography of Some Arylazothiohydantoin Derivatives By S. Darwish, H. M. Fahmy," M. A. Abdel Aziz, and A. A. El Maghraby, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt The polarographic behaviour of a series of arylazothiohydantoin derivatives has been investigated at a dropping mercury electrode. Two waves were displayed. The first and predominant one is due to the reductive splitting of the azo-linkage by a 4e irreversible process. The second is assumed to be for the reduction of the CONHCO group in the resulting molecule. A mechanism for the electrode process covering a wide range of pH is proposed, dis- cussed, and clarified via model compounds, identification of the resulting products of electrolysis, pK, determin-ations, and the interpretation of a-euro;3 plots.AROMATICazo-compounds have been the subject of niany investigations during the last de~ade.l-~Kecently heterocyclic azo-conipounds have received xttention .5.ti However, a literature survey revealed the absericc of polarographic data on arylazothiohyclaiitoiiis, a class of compounds which have several interesting applic-ations in the field of nwdicine since they contain tlic thiohydantoin ring.',* In this paper the polarographic beliaviour of 5-arylazo-1 -plimyl-4-tl 1ic )liyclan toin (Ia) ArN=NCH-C=S CH,-C-SI' I CgHgNbsol; C ,NH II 0 a;Ar = C,H, b; Ar = m-CH,C,H, c ,.Ar = p -CH3C,H, d; Ar = p -CIC,H, e ; Ar = p -BrC,H, f ; Ar = p -ocH3C6Hk CJ ; Ar = p -COZHC~H~ h ;Ar = m -NO~C~HL together with seveii of its substituted derivatives (Ib--h) and a structurally related model compound, 1-plienyl-4- thiohydantoin (11),have been investigated in solutions of different hydrogen ion concentration covcring a wide range of pH (2-12) in order to throw liglit on the possiblc clectrorcduction modes of such molcculcs at tlio dropping mercury electrode. EXPETi IMENTAT, S.yntl~eses.-5-A rylazo-1-pl~enyl-4-thinhydaiztoi ns (Ia-11) .An aromatic aniine (0.0068 niol), dissolved in concentrated liydr~~chloricacid (6 inl) antl water (G nil), was cooled to 0 "C ancl then treated with R cold solution of sodium nitrite (0.6 g) in water (6 nil). 'The cliazotized aiiiine was acldecl gradually to an ice-cold solution of 1-plienyl-4-tliioliptlan-toin (11) (1.3 g) dissolved in etlianol (50 nil) containing sodium acetate (2.6g).The mixture was then left aside in cl. colt1 chest for 1 h. The separated product was filtered off, washed with water, and recrystallized from acetic acid. Yields, m.p.s, and elemental analyses for the h-;irylazo-derivatives (la-h) are listed in Table 1, Polarograf~hy.-( a) Apparatus. Polxrog~.aphic curves were recorded with an LP60 polarograph (Laboratorni. l'ristroge, I'rague). A cell of our OUT design with a separated saturated calorie1 electrode wiis used. Tlw capillary poswssctl tlie following characteristics in tlie H,O opcm circuit: 1 3 s drop-1, n? 2.15 mg 5-l for I! 50 cin. (t)) Solutions. 10 :'M-Stock solutions werc prep;irtatl 1)y (lissolving an accurately weighed quantity of material in thc ;ippropriatc volunic of absolute ethanol (n,,2,51.359).nritton-liobin~oii modified univer-s;il buficrs 10 (prepre(1 from AnalaFi gratle c.liemicals) were used :is supporting clectrolyte. (c)Measurenzentq. All experiments were carried at 25 f 2 "C. Tlie half-wave potentials were measured graphically nncl ehpressed vevsus the saturated calomel electrode (s.c.c.) with :in accuracy 5 0.005 V. Tile accuracy of the applied voltage was checked by recording polarograms of standard 7'1 ' in 0.1M-ICNO, solutions for different concmtrations (El,, -0.45 ueYsu.7 s.c.e.). ((1) J'rocPduw. Ethanol atid the appropriate buffer solution were introduced into the po1arogr;Lpfiic cell.Thc solution was then deaeratetl by bubbling x stream of Iiytlrogen euro;or 10 min. The calculated amount of stock solution was then introduced into the cell so that the final concentration was 10 4~ in 10 nil of 40 (v/v) ethanolic buffer. Coutvolled Potential Electrolysis and Identification of the Pvciducts. -Mercury pool electrolysis was carried out 5Oc7i3 v/v etlinnol-10 HC1 solution (200 ml) and substance (la) (200 nig) taken as a typical example. The electrolysis cell was a 250-tnl conical flask in which the reference, auxiliary electrodes, and the gas inlet were added by means of a cork. The potential was cotitrollecl by a Tutorial T6 transistorized potentiostat at -0.8 V ziersus s.c.e. (2.e. on the limiting current plateau of wave A).The progress of the electro- lysis was followed by recording the decrease in current with time and the number of electrons was computed from i-t curves following the procedure outlined by Lingane l1 and found to be 4e. After disconnecting tlie electrolysis cell Erorn the circuit, 1 nil of the resulting solution was with- tlrawn and the presence of aniline in this solution was revealed by a stanclarcl spot test.', The remaining reaction mixture was partially evaporated on a water-bath to half its volume, then allowed to cool to room temperature and cstractecl with ether. The ether layer was in turn evapo- rated. The oil obtained was treated with a few ml of ethanol antl crystals separated ancl were recrystallized from diluted ethanol, 1ii.p.120 "C, v,,,,,. (KRr) 3 300 (NH,), 3 130 (ring NH,), 2 960 (CH), 1770 (C:O), 1720 (CO), and 1600 (NH) cilirl (1;ountl: (', 56.55; H, 4.7; N, 22.0. C,H,N,O, 1981 345 requires C, 56.54; euro;I, 4.71; N, 21.98). The cornpound negative wave b appeared with an i, value equal to half obtained was identified as 5-amino-l-phenylhydantoin. that of wave a (ilca 0.55 PA); with further increases in Tleterrnination of the Acid Dissociation Constants pH the limitillg current of wave b decreased in the form ~lsquo;ott?ntiometry.-rsquo;llsquo;lle phrsquo;, of Our Compounds (Table 2) Were of a well defined dissociation curve 14 and vanished com-tlctcrinined c:onventionally by titrating a 5 x 10-4~ pletely at pH 8, The half-wave potential En:of wave TABLE1 !i-Arylazo-l-pl~enyl-4-tliiohydantoinderivatives (Ia-h) Analysis (yo) C H ldquo;1 r.SlM.p.r------r------7 r-h v r--h v Compound (ldquo;C) Yield (:h) Calc. Found Calc. Found Calc. Found Calc. Found 261 90 60.8 60.9 4.05 4.0 18.9 19.0 10.8 10.7 363 91 62.0 61.9 4.5 4.6 18.05 18.0 10.3 10.3 250 90 62.06 01.8 4.5 4.4 18.05 18.1 10.3 10.4 265 92 54.45 54.4 3.35 3.4 16.95 16.9 9.7 9.7 260 85 48.0 48.1 3.95 2.9 14.95 14.9 8.56 8.4 220 80 58.9 58.8 4.3 4.3 17.15 17.2 9.8 9.8no0 88 56.45 56.5 3.55 3.5 16.45 16.5 9.4 9.5 270 82 52.8 52.7 3.2 3.3 20.5 20.4 9.4 9.4 * Cl: calc. 10.74; found, 10.8. t Br: calc. 21.33; found, 21.4. solution (50 nil; 1: 1 C,H,0H-H20) of each cornpound a shifted towards negative potential values with thc ngainsl n, standrml 2 x lO-M-N;LOHsolution with ;t lrsquo;p~ -increase in pH of the solution.This shift is described by 11nic:iiii rnotlcl 292 MK2 pH meter. two linear segments as shown for compound (Ia),takcn as a typical example, in Figure 2. The shifts of EA with,.1 ARLI? 2 pH for compounds (Ia-h) are compiled in Table 3 in thc Acid dic;socintion c-onstnn ts of 5-arylazo-1-pIicnyl-4-thio-11ydantoin t1criv;ttivcs (T;t-li) and 1 -phcn Vl-4-tIiio-form of linear equations. The Ei-pH plots of thc 11yclantoin (T 1) second wave b also revealed two linear segments inter- Componntl pK, Compound pKa cepting at pH ca. 6 a value which is accord with the pKrsquo; (T4 7.55 (re) 7.77 values l4 (apparent polarographic dissociation constant, (rsquo;19 7.88 (If) 7.98 i.e. pH value corresponding to amp;/2)obtained for the il-(Ic) 7.60 (Ig) 7.10 pH curves (Figure 3).The half-wave potential of wave (1 (1) 7.53 (Ih) 7.30 (ldquo;1 8.45 b in the first segment is little influenced by a change in hydrogen ion concentration and thus is practically in- RESULTS AND DISCUSSION dependent of pH variation (dE,/dpH ca. 0). Shifts of Polarogvafihic Behaviour of (Ia-g) .-The polaro-Ei with the increase in pI-1 for the second segment are grams of 10-4~-(Ia-g) in 40y0v/v ethanolic buffers are given in Table 3. The more positive wave a is diffusion- FIGURE Schematic representation of the polarograms of 10-*~-5-phenylazo-l-phenyl-4-thiohydantoin1 in 40 v/vethanolic Britton- Robinson buffers. All curves start from zero potential represented by those of (Ia) taken as typical example in controlled as shown by the linear dependence of il on Figure 1.In acid solutions of pH 4compounds (Ia- concentration (0.5-3 x 10-4~)at various pH values, and g) displayed a well defined polarographic wave a (i ca. by the values x = 0.45-0.55 in il = khx (h = mercury 1.1 PA) the height of which was practically constant column height). Similarly, wave b was proved to be within the whole pH range (2---12). At pH 4 a more diffusion-controlled in the pH range in which it was wave b wave a11.2 10, -082 XL kl 06-04-02-2 4 6 8 10 12 PH 2FIGURE Et-pH plot for the polarographic wave of 5-phenylazo-1-phenyl-4-thiohydantoin practically constant (i.e. pH independent). Above pH 5 this wave was partly kinetically controlled (x 0.45).Logarithmic analysis of waves a and b at different pH values using the fundamental equation for polarographic waves l5 indicated that the two electrode processes pro- ceed irreversibly; the slopes obtained are compiled in Table 3. PoZarographic Behaviour of (Ih) .-In addition to waves a and b in the polarograms of (Ia-g), compound (Ih) 1.0:1 wave a ~ 0.8 wave b I0.01 I ' 1 , I , f , , , , 2 4 6 8 10 12 PH FIGURE it-pH plot for the yolarographic wave of3 5-phenylazo-1-phenyl-4-thiohydan toin J.C.S.9Perkin I1 showed an additional 4e irreversible diff usion-controlled wave c lying between waves a and b. The effect of pH on E, of the different waves is shown in Figure 4.The behaviour of the additional wave can be described by the linear equation (1). The data for the two other waves Ek = -0.18 -0.08 pH (1) are compiled in Table 3. Since the behaviour of this wave is comparable to that known for a m-nitro-groupl16 18 -wave b16 -14 -wave c 0 2 4 6 8 10 12 PH 4FIGURE E*-pH plots for the polarographic waves of 5-(m-nitrophenylazo)-1-phenyl-4-thiohydantoin it is not unreasonable to attribute this extra wave to the reduction of the nitro-group to a hydroxylamine equ- ation (2).l6 -NO, + 4e-+ 4H+ --NHOH + H,O (2) Polarographic Behaviour of ModeZ Compound (I I) .--Under similar experimental conditions model compound (11) showed no polarographic wave in acid media of pH 7.5.At pH values greater than 7.5 a wave started to appear which increased in height with the increase of pH and became u7ell defined at pH 10. As is clear from Figure 5, of this wave is pH-independent in the range of its appearance. The il-pH plot for this compound is illustrated in Figure 6. The increase of il with the in-crease of pH is in the form of a dissociation curve with a pK' value of 8.7. Assignment of the Polarographic Waves of (Ia-h) .--(1) In the more positive wave a the -N=N-moiety is the reduced species. (2) The more negative reduction step (wave b) corresponds to reduction of the molecule 347 resulting from the reductive splitting of the -N=N-1-phenyl-4-thiohydantoin (IV) is reasonably explained moiety. The following proof is given for these assign- by the fact that (IV) is hydrolysed under mild conditions ments.The shift of Eg with increase of pH given in to (111). This is confirmed by the fact that 2,4-dithio- Table 3 is in good agreement with the reported values for hytlantoin derivatives are known to be easily hydrolysed TABLE3 Polarographic data of 5-arylazo-1-phenyl-4-thiohydantoinderivatives (Ia-h) Wave a Wave b -PH Et-PH Segment 1 Segment 2 RTI Segment 2 RTI Compound (PH 2-71 (PH 8-12) unF * an pHb (PH 5-7) unF u'y2 pHb (Ia) E+= -0.06-0.091 pH Ek = +0.57-0.143 pH 0.150 0.394 6.4 El = -0.78-0.088 pH 0.066 0.895 6.2 (Ib) E+= +0.08--0.091 pH El = +0.75-0.143 pH 0.161 0.367 6.3 Et = -0.60-0.100pH 0.098 0.603 5.7 (Ic) Ed = -0.18-0.077 pH Et = +l.l8-0.200 pH 0.170 0.348 5.9 El = $0.53-0.100 pH 0.071 0.832 6.4 (Id) E+= +0.03 -0.080 pH Ek = f0.96-0.167 pH 0.179 0.330 6.5 Ei = -0.59-0.100 pH 0.066 0.895 5.7 (re) E+= +0.06-0.083 pH Et +0.79--0.167 pH 0.162 0.365 6.4 Eb = -0.59-0.100 pH 0.095 0.622 5.7 (If) Eamp;= -o.o4--o.o9i PH Et = +0.65-0.200 pH 0.180 0.328 5.9 E+= -0.75-0.100 pH 0.070 0.844 6.9 (Ig) E+= +O.l4--0.86 pH EI = +1.05-0.25 pH 0.145 0.408 6.4 E+= -0.75-0.100 pH 0.102 0.579 5.7 (Ih) E+= +O.OP-0.071 pH E+= +0.25-0.167 pH 0.167 0.354 6.0 Ei :-0.97-0.08 pH 0.067 0.882 8.0 a Slope of logarithmic analysis.b Individual pH value at which logarithmic analysis was carried out. Ei in the first segemnt of wave b is pH-independent (dE+/dpH ca. 0). the analogous azobenzeiie deri~atives.l-~ This is also at the 4-position in hydrochloric acid giving 2-thio- confirmed by the fact that when c.p.e. experiments were hydantoin l7 derivatives thus indicating that the thio- carried out on this wave, the main products of electro-carbonyl group in position 4 is very reactive.Schemc 1 lysis were 5-amino-1-phenylhydantoin(111)and aniline, provides an interpretation of these results. At first glance two mechanisms I and 2 (Scheme 2) can be attributed to the electrode process occurring in wave 11. Mechanism 2 is rejected for the following reasons. When c.p.e. was carried out on wave b no ammonia could be detected. Also, if mechanism 2 took place, cornpourid 1.2 -1.0 , 1.0 c bsol; 0.8 I-IN 4r I 0.8-U ? 0.6,-'-.0.4 I, I I IJ 6 8 10 12 0.2-PH FIGURE Et-pH plot for the polarographic wave of the5 tmodel compouiicl 1-phenyl-4-thiohydantoin I1 1#11 1 11 a direct indication that the site attacked is the -N=N-6 8 10 12 group. The identification of the nitro-group in com-PH 6pound (Ih) as the source of the more negative wave is a FIGURE il-pH plot for the polarographic wave of the further indication that the reducible species is in the azo model compound 1-phenyl-4-thiohydantoin and not in the hydrazone form. If this was not correct (11)would be a main product of electrolysis and hence the the nitro-wave would appear first (this is further con-polarograms will consist of three waves in alkaline media firmed by the Hammett relationship). That 5-amino-l- cf.polarographic behaviour of (II). This is not the case phenylhydantoin (111) is the product and not 5-amino- since a third wave did not make an appearance. Thus J.C.S. Perkin I1 mechanism 1most probably explains the results for wave these molecules. The constant value of the transition b. Compounds containing the -CO-NH-CO- structure coefficient (ccn),19a prerequisite for quantitative study of have been reported to be reduced in a similar way.l* the effects of substituents, was ascertained by examina- tion of the data in Table 3. The value was found to be Acid medium pH pXo practically constant at individual pH values. The most reliable E, values at selected pH have been correlated FF2 1Le-3H' ArNH2 + H2NCH--C=S HI-ti20 HlNCH--C=OI I -4 II C6H5Nbsol;C/Nfd -ti,+ C6H5Nbsol;C/NH II ti0 0, (IV) cm, SCHEME1 The fact that in alkaline medium, i.c.at pH pK,, only wave a is observed is because in these media compounds with different Hammett constants.20 Statistical treat- (Ia--h) exist as stabilized anions in which the negative ment of the data was carried out using Jaffe calcul- charge is distributed over tlitl CS, N, and CO functions ations 21 (Tablc: 4). Representative Eb-o plots are Mechanism 1 Mechanism 2 H2NCH-CHOH H2NCH-C-0 II II C6H5N'"-c6H5N'KNH 4-H+ SCHEME2 rendering the molecule electron repelling. This also illustrated in Figure 7. As is clear from these plots and explains why wave b disappears in alkaline media. the data in Table 4 good linearity is obtained.Above Additional support for our electroreduction scheme was pH ca 7 the correlation is weak probably due to the fact found to be necessary. Thus it appeared mandatory that at the vicinity of these pH values (i.e. approximate to study the effect of substituents on the reaction site of pK, values) the studied compound is in the form of a TABLE4 Statistical treatment of Eg -0 data Wave a d 00 cr+ PH r--P h I' -7 s.d. r P h Y s.d. bsol; r-P A Y 7s.d. 4.8 0.266 0.807 5 0.069 0.224 0.586 t0.096 0.207 0.836 amp; 0.084 6.9 7.85 0.244 0.165 0.869 0.514 amp; 0.050*0.098 0.239 0.268 0.736 0.722 amp; 0.068 0.079 0.184 0.136 0.876 0.569 -f 0.0048 amp; 0.094 Wave b 5.8 0.104 0.363 f0.069 0.163 0.383 amp; 0.0681 0.072 0.377 0.068 6.6 0.091 0.357 3-0.065 0.093 0.245 amp; 0.0640 0.062 0.366 0.061 1981 349 wave a and the negative wave b.02-0/916 Received, 16th June, 19803 1.l.I.l.1,I.IIIII 1.0-p 0.244 Azoxy, Rzo and Hydrazo Compounds ' cd. S. Patai, Wiley, New r 0869 York, 1975, ch. 12, p. 443.-El z IV -sd '0.050 C. L. Perrin, ' Mechanisms of Organic Polarography ' in 08-' Organic Polarography ', eds. Y.Zuman and C. L. Perrin, P-KH, Interscience, New York, 1969, p. 203 W. U. Malikand P. N. Gupta, J. Electvounalyt. Chem., 1974,02-54, 417. F. J. Zsoldos, U.S.P. 3 346 446 (Cl. 167-17) (Chem. Abs., 1968. 68. 6082d).'H. Thielen;ann, Su. Pharm., 1971, 39, 8 (Ch~m.Abs., 1971, 75, 5638).3'.Elmore and T.D.A. Toseland, J. Chem. Soc., 1956, 188. !a lo H. T. S. Britton, ' Hydrogen Ions ', Chapman and Hall, London, 4th edn., vol. 1, 1955, p. 365. l1 J. J. vngane, J. nmev. Chem. Soc., 1945, 87, 1916. lBIT. Fcigl, ' Spot Tests ', Elsevier, Amsterdam, 1954, 4th ccln., vol. 2, p. 109. l3 W. M. Clark, ' The Deterinination of Hydrogen lolls ', Bailliere, Tindall and Cox, I,oiidon, 1928, 3rd edn., pp. 15, 22 and ,528. l4 Y.Zuman, ' Thc Elucidation of Organic Electrode Processes,' ed. I.. Meites, Academic Press, New York, 1969, ch. 11, p. 20. l5 J. M. Kolthoff and J. J. Lingane, ' Polarography,' Inter- scicnce, New York, 1952, pp. 202-297, 666-267. l6 H. Lund in M. M. Raizer, ' Cathodic Reduction of Nitro Compounds in Organic Electrochemistry,' Dekker, New York, 1973, ch. VlI, p. 315. l7 H. C. Carrington, J. Chewt. SOC., 1947, 684. I-'. Zuman and I,. Meites, ' Progress in l'olarography,' Wiley-Interscience, Ncw York, 1972, pp. 125--126. lo P. Zuman, ' Substitucnt Effects in Organic P'olarography,' Plenum Press, New York, 1967, p. 45. 20 C. D. Ritchie and W. 1;. Sagar, Prop. Phyr. Ovg. Ckn., 1964, 2, 334. 21 H. H. Jaffd, Chmz. Iw., 1953, 53, 191. p 0.091 r 0.357 s.d. 20.065 1.61 -08 -06 -04 -02 00 +02 +0.4 +06 +0.6 0-F~GURE LA-(r IWatioii for 5-arylazo-l-phcnyl-4-thiohydantoin7 derivatives at different pH values
机译:J.C.S. Perkin I1 Polarography of Some Arylazothiohydantoin Derivatives 作者:S. Darwish, H. M. Fahmy,“ M. A. Abdel Aziz, and A. A. El Maghraby, Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt 在滴汞电极上研究了一系列芳基硫代乙内酰脲衍生物的极谱行为。显示了两个波浪。第一个也是最主要的原因是偶氮键通过4e不可逆过程的还原分裂。第二个假设是用于还原所得分子中的CONHCO基团。通过模型化合物、电解产物的鉴定、pK、测定和 a-€3 图的解释,提出了一种涵盖广泛 pH 值范围的电极工艺机制,并进行了讨论和阐明。芳香基偶氮化合物在最近一次de~ade.l-~Kecently杂环偶氮化合物中一直是niany研究的主题.5.ti 然而,一项文献调查揭示了芳基偶氮杂氮化合物的极谱数据,这是一类化合物,由于它们含有tlic硫代乙内酰脲环,因此在nwdicine领域有几个有趣的应用。 ArN=NCH-C=S CH,-C-SI' I CgHgN\ C ,NH II 0 a;Ar = C,H,b;Ar = m-CH,C,H,c ,.Ar = p -CH3C,H, d;Ar = p -CIC,H, e ;Ar = p -BrC,H, f ;Ar = p -ocH3C6Hk CJ ;Ar = p -COZHC~H~ h ;Ar = m -NO~C~HL 及其取代衍生物 (Ib--h) 和结构相关的模型化合物 1-plienyl-4- 硫代乙内酰脲 (11) 在不同氢离子浓度的溶液中研究了 pH 值很宽 (2-12) 的溶液,以在 tlio 滴汞电极处对此类分子的可能诱导模式进行研究。EXPETi IMENTAT, S.yntl~eses.-5-A rylazo-1-pl~enyl-4-thinhydaiztoi ns (Ia-11) .将芳香族苯胺(0.0068 niol)溶于浓liydr~~氯酸(6 inl)和水(G nil)中,冷却至0“C ancl,然后用亚硝酸钠(0.6 g)的R冷溶液在水(6 nil)中处理。将cliazotized的aiiiine逐渐acldecl为1-plienyl-4-tliioliptlan-toin(11)(1.3g)的冰冷溶液,溶于含有乙酸钠(2.6g)的etlianol(50nil)。然后将混合物放在cl.colt1箱中1小时。滤出分离产物,用水洗涤,用醋酸重结晶。h-的产量、m.p.s和元素分析;鞘氮衍生物(la-h)列于表1,Polarograf~hy.-(a)仪器。用 LP60 极谱仪 (Laboratorni. l'ristroge, I'rague) 记录 Polxrog~.aphic 曲线。我们采用OUT设计的电池,使用分离的饱和卡路里1电极。Tlw 毛细管 poswssctl tlie 在 tlie H,O opcm 电路中具有以下特性: 1 3 s drop-1, n?2.15 毫克 5-l 用于 I!50 cin.(t)) 解决方案。10 :'M-Stock 溶液 werc prep;IRTATL 1)y(在四氢大麻酚中溶解准确称量的材料;无水乙醇的 ippropriatc volunic (n,,2,51.359).nritton-liobin~oii modified univer-s;il buficrs 10 (prepre(1 from AnalaFi gratle c.liemicals) 被使用:is supporting clectrolyte.(三)Measurenzentq.所有实验均在25 f 2“C.下进行,Tlie半波电位以图形方式测量饱和甘汞电极(s.c.c.),精度为5 0.005 V.通过记录0.1M-ICNO中标准7'1'的极谱图来检查施加电压的精度,不同浓度(El,, -0.45 ueYsu.7 s.c.e.)。((1) J'rocPduw.将乙醇和适当的缓冲溶液通入po1arogr中;Lpfiic 细胞。然后通过鼓泡 x 流的 Iiytlrogen €或 10 分钟来脱气 Thc 溶液。然后将计算量的储备溶液通入池中,使最终浓度为10 4~在10 nil的40%(v/v)乙醇缓冲液中。Coutvolled 电位电解和 Pvciducts 的鉴定。-以5Oc7i3 v/v etlinnol-10 %HC1溶液(200ml)和物质(la)(200nig)为典型例进行汞池电解。电解槽是一个 250 吨的锥形瓶,其中参比、辅助电极和气体入口通过软木塞添加。电位由教程 T6 晶体管化恒电位仪在 -0.8 V ziersus s.c.e.(2.e. 在波 A 的极限电流平台上)进行。电解的进展之后,记录了电流随时间的降低,并按照 Lingane l1 概述的程序从 i-t 曲线计算电子数,发现电子数为 4e。断开电解槽的电路后,将所得溶液的1 nil与ttlrawn一起使用,并通过stanclarcl点试验显示该溶液中苯胺的存在。以太层反过来被蒸发。得到的油用几ml乙醇和稀乙醇分离的晶体进行重结晶,1ii.p.120“C,v,,,,,.(KRr) 3 300 (NH,)、3 130 (环 NH、)、2 960 (CH)、1770 (C:O)、1720 (CO) 和 1600 (NH) cilirl (1;ountl: (', 56.55;H,4.7;N,22.0。C,H,N,O, 1981 345 需要 C, 56.54;一欧元,4.71欧元;N,21.98%)。玉米磅负波b出现i,得到的值等于一半,被鉴定为5-氨基-L-苯基乙内酰脲。A浪(ILCA 0.55 PA);随着酸解离常数 pH 值的进一步增加,波 b 的极限电流以 ~'ott?ntiometry.-'l'lle ph' 的形式减小,我们的化合物(表 2)具有明确的解离曲线 14,并通过在 pH 8 下滴定 5 x 10-4~ 充分滴定 com-tlctcrinined c:onventionally 消失,半波电位 En:波 TABLE1 !i-芳偶氮-l-pl~烯基-4-tliiohydantoin衍生物 (Ia-h) 分析 (yo) C H “1 r.SlM.p.r------r------ 97 r-h v r--h v 化合物 (”C) 产率 (:h) 计算结果 计算结果 261 90 60.8 60.9 4.05 4.0 18.9 19.0 10.8 10.7 363 91 62.0 61.9 4.5 4.6 18.05 18.0 10.3 10.3 250 90 62.06 01.8 4.5 4.4 18.05 18.1 10.3 10.4 265 92 54.45 54.4 3.35 3.4 16.95 16.9 9.7 9.7 260 85 48.0 48.1 3.95 2.914.95 14.9 8.56 8.4 220 80 58.9 58.8 4.3 4.3 17.15 17.2 9.8 9.8no0 88 56.45 56.5 3.55 3.5 16.45 16.5 9.4 9.5 270 82 52.8 52.7 3.2 3.3 20.5 20.4 9.4 9.4 * Cl:计算值 10.74;发现,10.8%。t Br: 计算值 21.33;发现,21.4%。每个玉米磅 a 的溶液 (50 nil; 1: 1 C,H,0H-H20) 向负电位值移动,thc ngainsl n, standrml 2 x lO-%M-N;LOH解决方案与 ;t l'p~ -溶液pH值的增加。这种转变由11nic:iiii rnotlcl 292 MK2 pH计描述。如图2所示的化合物(Ia)的两个线性段,takcn为典型示例。EA的转变,。1 阿利?2化合物(Ia-h)的pH值在表3中编制在thc酸二;5-芳基偶氮-1-pIicnyl-4-硫代-11乙内酰脲t1criv的c-onstnn ts;ttivcs (T;t-li)和1-phcn Vl-4-tIiio形式的线性方程。thc 11yclantoin (T 1) 第二波 b 的 Ei-pH 图也揭示了两个线性片段间 Componntl pK,化合物 pKa 在 pH 值约为 6 时,该值与 pK' (T4 7.55 (re) 7.77 值 l4 (表观极谱解离常数,('19 7.88 (If) 7.98 即对应于 &/2 的 pH 值)得到的 il-(Ic) 7.60 (Ig) 7.10 pH 曲线(图 3)。波的半波电位 (1 (1) 7.53 (Ih) 7.30 (“1 8.45 b 在第一段中受氢离子浓度变化的影响很小,因此实际上与结果和讨论有关 pH 变化 (dE,/dpH ca. 0)。表3给出了(Ia-g).-随着第二段pI-1增加,第二段的极性-Ei为10-4~-(Ia-g)的克数为10-4~-(Ia-g),乙醇缓冲液如表3所示。更正的波 a 是扩散 - 图 10-*~-5-苯基偶氮-l-苯基-4-硫代乙内酰脲1在 40% v/vethanolic Britton-Robinson 缓冲液中的极谱图示意图。所有曲线都从零电位开始,以 (Ia) 的电位为典型示例,如 il 1.In 对 pH 4 时,在波 b 波 a11.2 10, -082 XL kl 06-04-02-2 4 6 8 10 12 PH 2FIGURE 5-苯基偶氮-1-苯基-4-硫代海因的极谱波的 Et-pH 图几乎恒定(即 pH 无关)。在 pH 值 5 以上时,该波部分受到动力学控制 (x 0.45)。使用极谱波 l5 的基本方程对不同 pH 值下的波 a 和 b 进行对数分析表明,两个电极过程是不可逆的;所获得的斜率见表3。(Ih) 的 PoZarographic Behaviour .-除了 (Ia-g) 的极谱图中的波 a 和 b 外,化合物 (Ih) 1.0:1 波 a ~ 0.8 波 b I0.01 I ' 1 , I , f , , , , 2 4 6 8 10 12 PH 图 it-pH 图 3 5-苯基偶氮-1-苯基-4-硫代羟基 toin J.C.S.9Perkin I1 的 yolaography 波的 pH 图显示,在波 a 和 b 之间还有一个额外的 4e 不可逆差分控制波 c。pH值对不同波的E的影响如图4所示,附加波的行为可以用线性方程(1)来描述。另外两个波 Ek = -0.18 -0.08 pH (1) 的数据汇编在表 3 中。由于该波的行为与已知的间硝基-基团 l16 18 -波 b16 -14 -波 c 0 2 4 6 8 10 12 PH 4图 5-(间硝基苯偶氮)-1-苯基-4-硫代乙内酰脲的极谱波的 E*-pH 图相当,因此将这个额外的波归因于硝基还原为羟胺 [等同 (2)].l6 -NO, + 4e-+ 4H+ -%-NHOH + H,O (2) ModeZ化合物的极谱行为(I I) .--在类似的实验条件下,模型化合物(11)在pH值大于7.5的酸性介质中无极谱波10时成为u7ell。从图 5 中可以清楚地看出,该波在其外观范围内与 pH 无关。该化合物的il-pH图如图6所示。随着 pH 值的增加,il 的增加以 pK' 值为 8.7 的解离曲线的形式出现。(Ia-h) 的极谱波的分配 .--(1) 在更正的波 a 中,-N=N-部分是还原的物质。(2)更负的还原步骤(波b)对应于分子347的还原,由-N=N-1-苯基-4-硫代乙内酰脲(IV)的还原分裂得到合理的解释。以下证据是(IV)在温和条件下水解的事实。随着pH值的增加,Eg的转变为(111)。2,4-二硫代-表3与已知易水解的海特兰妥因衍生物的报告值非常吻合,这一事实证实了这一点 表3 5-芳基偶氮-1-苯基-4-硫代乙内酰脲衍生物(Ia-h)波A波波B -PH值 Et-PH波段1 段2 RTI段2 RTI化合物(PH值2-71(PH值8-12)unF * an pHb(PH值5-7)unF u'y2 pHb(Ia)E+= -0.06-0.091 pH值 Ek = +0.57-0.143 pH 值 0.150 0.394 6.4 El = -0.78-0.088 pH0.066 0.895 6.2 (Ib) E+= +0.08--0.091 pH El = +0.75-0.143 pH 0.161 0.367 6.3 Et = -0.60-0.100pH 0.098 0.603 5.7 (Ic) Ed = -0.18-0.077 pH Et = +l.l8-0.200 pH 0.170 0.348 5.9 El = $0.53-0.100 pH 0.071 0.832 6.4 (同上) E+= +0.03 -0.080 pH Ek = f0.96-0.167 pH 0.179 0.330 6.5 Ei = -0.59-0.100 pH 0.066 0.895 5.7 (re) E+= +0.06-0.083 pH Et +0.79--0.167 pH 0.162 0.365 6.4 Eb = -0.59-0.100 pH 0.095 0.622 5.7 (If) E&= -o.o4--o.o9i PH Et = +0.65-0.200pH 值 0.180 0.328 5.9 E+= -0.75-0.100 pH 值 0.070 0.844 6.9 (Ig) E+= +O.l4--0.86 pH EI = +1.05-0.25 pH 值 0.145 0.408 6.4 E+= -0.75-0.100 pH 值 0.102 0.579 5.7 (Ih) E+= +O.OP-0.071 pH 值 E+= +0.25-0.167 pH 值 0.167 0.354 6.0 Ei :-0.97-0.08 pH 值 0.067 0.882 8.0 a 对数分析的斜率。波 b 的第一个序列中的 Ei 与 pH 无关(dE+/dpH 约 0)。类似的偶氮苯并 deri~atives.l-~ 这也是在盐酸中的 4-位,得到 2-硫代 - 当 c.p.e.实验对乙内酰脲L7衍生物的实验表明,硫代-在这一波上进行,主要产物的电羰基在4位具有很强的反应性。Schemc 1 裂解了 5-氨基-1-苯基乙内酰脲(111)和苯胺,提供了对这些结果的解释。乍一看,两种机制 I 和 2(方案 2)可归因于第 11 波中发生的电极过程。由于以下原因,机制 2 被拒绝。当在b波上进行c.p.e.时,无法检测到氨。此外,如果发生机制 2,则 cornpourid 1.2 -1.0 , 1.0 c> \ 0.8 I-IN 4r I 0.8-U ?0.6,-'-.0.4 I, I I IJ 6 8 10 12 0.2-PH 图 5 tmodel compouiicl 1-phenyl-4-硫代乙内酰脲 I1 1#11 1 11 的极谱波的 Et-pH 图直接表明被攻击的位点是 -N=N-6 8 10 12 组。将 com-PH 6 磅 (Ih) 中的硝基识别为更负波的来源是极谱波的图 il-pH 图,进一步表明可还原物质在偶氮模型化合物 1-苯基-4-硫代乙内酰脲中,而不是腙形式。如果这是不正确的,(11)将是电解的主要产物,因此硝基波将首先出现(这是进一步的极谱图,将由碱性介质中的三个波组成,由哈米特关系确认)。即5-氨基-l-[参见(II)的极谱法行为]。事实并非如此,苯乙内酰脲 (111) 是产物而不是 5-氨基,因为第三波没有出现。因此,J.C.S. Perkin I1 机制 1 最有可能解释波这些分子的结果。转换 b 的常量值。据报道,含有-CO-NH-CO-结构系数(ccn)的化合物,19a定量研究的先决条件以类似的方式降低。发现该值是酸性培养基 pH pK,,只观察到波 a,这是因为在这些介质中具有不同哈米特常数的化合物.20 统计处理- (Ia--h) 以稳定的阴离子形式存在其中,使用 Jaffe 计算对数据进行负电荷分布在 ctitl CS、N 和 CO 函数 21 上(Tablc:4)。 代表性的 Eb-o 图是机理 1 机理 2 H2NCH-CHOH H2NCH-C-0 II II C6H5N'“-c6H5N'KNH 4-H+ SCHEME2使分子排斥电子。图 7 也说明了这一点。从这些图中可以清楚地看出,并解释了为什么波b在碱性介质中消失。得到表4中的数据线性度良好。以上:对我们的电还原方案的额外支持是pH值约为7,相关性较弱,可能是由于发现有必要。因此,在这些pH值附近(即近似于研究取代基对pK反应位点的影响,值)所研究的化合物似乎是强制性的 表4 Eg -0数据的统计处理 波 a d 00 cr+ PH r--P h I' -7 s.d. r P h Y s.d. \ r-P A Y 7s.d. 4.8 0.266 0.807 5 0.069 0.224 0.586 t0.096 0.207 0.836 & 0.0846.9 7.85 0.244 0.165 0.869 0.514 & 0. 050*0.098 0.239 0.268 0.736 0.722 & 0.068 0.079 0.184 0.136 0.876 0.569 -f 0.0048 & 0.094 波 b 5.8 0.104 0.363 f0.069 0.163 0.383 & 0.0681 0.072 0.377 0.068 6.6 0.091 0.357 3-0.065 0.093 0.245 & 0.0640 0.062 0.366 0.061 1981 349 浪 a 浪和负浪 b.02-[0/916 收稿日期,6 月 16 日, 19803 1.l.I.l.1,I.IIIII 1.0-p 0.244 偶氮、Rzo 和腙化合物 ' cd.S. Patai, Wiley, New r 0869 York, 1975, ch. 12, p. 443.-El z IV -sd '0.050 C. L. Perrin, ' Mechanisms of Organic Polarography ' in 08-' Organic Polarography ', eds. Y.Zuman and C. L. Perrin, P-KH, Interscience, New York, 1969, p. 203 W. U. Malikand P. N. Gupta, J. Electvounalyt.化学, 1974,02-54, 417.F. J. Zsoldos, U.S.P. 3 346 446 (Cl. 167-17) (Chem. Abs., 1968.68. 6082d)。H.蒂伦;安,苏。Pharm., 1971, 39, 8 (Ch~m.Abs., 1971, 75, 5638).3'.Elmore 和 T.D.A. Toseland, J. Chem. Soc., 1956, 188.!a lo H. T. S.Britton,“氢离子”,Chapman and Hall,伦敦,第 4 版,第 1 卷,1955 年,第 365 页。l1 J. J. vngane, J. nmev.Chem. Soc., 1945, 87, 1916.l位。Fcigl,“Spot Tests”,Elsevier,阿姆斯特丹,1954 年,第 4 卷,第 2 卷,第 109 页。l3 W. M. Clark, 'The Terinination of Hydrogen lolls ', Bailliere, Tindall and Cox, I,oiidon, 1928, 3rd edn., pp. 15, 22 and ,528.l4 Y.Zuman,“有机电极过程的Thc阐明”,编辑I.。Meites,学术出版社,纽约,1969年,第11章,第20页。l5 J. M. Kolthoff 和 J. J. Lingane,“极谱法”,Interscicnce,纽约,1952 年,第 202-297、666-267 页。l6 H. Lund in M. M. Raizer, 'Cathodic Reduction of Nitro Compounds in Organic Electrochemistry', Dekker, New York, 1973, ch. VlI, p. 315.l7 HC 卡灵顿,J. Chewt。SOC.,1947 年,第 684 页。I-'.祖曼和我,。Meites,“l'olarography 的进展”,Wiley-Interscience,Ncw York,1972 年,第 125--126 页。lo P. Zuman,“有机 P'olarography 中的替代效应”,Plenum Press,纽约,1967 年,第 45 页。20 C. D. Ritchie 和 W. 1;。Sagar, Prop. Phyr.奥夫格。Ckn., 1964, 2, 334.21 H.H.Jaffd,Chmz.I

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号