...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Dipole moment and helium(I) photoelectron spectroscopic studies of the conformation of di-2-pyridyl and diphenyl dichalcogenides R2X2(X = S, Se, or Te)
【24h】

Dipole moment and helium(I) photoelectron spectroscopic studies of the conformation of di-2-pyridyl and diphenyl dichalcogenides R2X2(X = S, Se, or Te)

机译:二-2-吡啶基和二苯基硫族化合物R2X2(X = S, Se, or Te)构象的偶极矩和氦(I)光电子能谱研究

获取原文
           

摘要

1981 281 Dipole Moment and Helium(i) Photoelectron Spectroscopic Studies of the Conformation of Di-2-pyridyl and Diphenyl Dichalcogenides R2X2 (X = S, Se, or Te) By Francesco P. Colonna and Giuseppe Distefano, Laboratorio dei Composti del Carbonio Contenenti Eteroatomi del CNR, Ozzano Emilia, Bologna, Italy Vinicio Galasso, lstituto di Chimich, Universiti di Trieste, 34127 Trieste, Italy Kurt J. Irgolic, Giuseppe C. Pappalardo,*t, and Leslie Pope, Department of Chemistry, Texas A amp; M University, College Station, Texas 77843, U.S.A. The dipole moments of di-2-pyridyl dichalcogenides in benzene solution at 25 and 45" and the He1 photoelectron spectra of di-2-pyridyl and diphenyl dichalcogenides R,X, (X = S, Se, or Te) were investigated to obtain inform- ation about the conformation of these molecules in solution and in the gas phase.The calculated C-X-X-C dihedral angles (100-1 1Oo) for the dipyridyl dichalcogenides, for which pCalc= pexp,are at least 10" larger than those for the diphenyl derivatives. These results indicate that the x-interactions between the X atoms and the pyridyl groups are more effective than between the X atoms and the phenyl rings, reducing, as a consequence, repul- sion between the lone electron pairs of the chalcogen (X) atoms and lowering the torsional barriers about the X-X bonds. The variation of the dihedral angles between the phenyl derivatives and the corresponding dipyridyl dichalcogenides as derived on the basis of photoelectron spectroscopic data, is in disagreement with the results from dipole moment data.This difference between the gas phase and solution results may be caused by solvent and temperature effects or by secondary interactions between the x and ~7orbitals. The dipole moment and photo- electron spectral data indicate that the diaryl dichalcogenides are conformationally flexible with a skew equilibrium conformation and very little interaction between the two aryl groups. THE conformation of the diphenyl dichalcogenides (C,H,),X, (X = S, Se, or Te), were studied earlier by dipole moment 1,2 and n.m.r. spectroscopic method^.^ In order to elucidate the dependence of the conform- ational characteristics of diaryl dichalcogenides on the aryl groups with special attention to the C-X-X-C torsion angles and the electronic structures of the di- chalcogenide groups, a study of the di-2-pyridyl di- chalcogenides, Py,X, (Py = 2-pyridyl, X = S, Se, or Te) has been undertaken.The conformations of di-2-pyridyl disulphide in solution 4-6 and in the solid state are known. Structural and conformational information about the analogous selenium and tellurium compounds is not available. In this study the electrical dipole moments of Py,Se, and Py,Te, were measured in benzene at 25 and 45" to elucidate the conformations of these molecules in solution. He1 Photoelectron spectroscopy is a useful tool to probe the conformational preferences of dichalcogenides in the gas phase. Several investigations of compounds of the general formula R-X-X-R (X = As, N, 0, P, S, or Se) *-11 established that the splitting of the first photo- electron band is determined by the dihedral angle between the lone electron pairs of the X atoms.The diphenyl dichalcogenides and di-2-p yridyl dichalcogenides were studied by He1 photoelectron spectroscopy. The differences between the conformations of the gaseous and dissolved molecules are briefly discussed. EXPERIMENTAL Diphenyl dichalcogenides and di-2-pyridyl disulphide were available from previous ~tuciies.l~~-~ Dz-Z-fi-yt4iyZ DiseZenzde.-Seleiiium (3.0g, 0.038 moll was suspended in ethylene glycol monomethyl ether (150 1111). Sodium boroliytlricle (1.0 g, 0.027 mol) was added to the suspension kept under nitrogen and chilled in an ice-water bath.12 After the initial reaction had subsided, the mixture was refluxed for 1.5 h.2-Bromopyridine (4.1 g, 0.026 mol) was then added. The mixture was refluxed (m.7 h) until t.1.c. showed that most of the bromopyridine had reacted. The solution was cooled to room temperature and then extracted with chloroform. The separated chloroform layer was washed with water. Evaporation of chloroform produced a residue which was dissolved in hot hexane. Ethanol was added until crystallization began. On cooling yellow crystals (2.8 g) separated and these were recrystal- lized from hot hexane. Yellow needle-like crystals of di-2-pyridyl diselenide (1.6 g, 40 based on bromopyridine) melted at 4'7.5-48.5" (lit.,13 47.5-48.0"). 2-Pyridylwzagnesiunz Bromide.-Magnesium (5.1 g, 0.21 mol) was added to a solution of ethyl bromide (1.2 g, 0.01 mol) in tetrahydrofuran (20 ml) kept under nitrogen.After the initial reaction had subsided, a solution of Z-bromo-pyridine (16.8 g, 0.10 mol) and ethyl bromide (5.0 g, 0.046 mol) in tetrahydrofuran (100 ml) was dropped on the magnesium turnings. After all the bromopyridine had been added, the mixture was refluxed for 4.5 h. Di-2-pyridyZ Dite1Zuride.-The ditelluride was prepared according to the procedure reported by Haller and Irg01ic.l~ The Grignard reagent described above was transferred into an Erlenmeyer flask. Tellurium (7.5 g, 0.059 mol) was added. The mixture was heated gently for 20 min and then cooled in an ice-water bath. The flask was then closed with a rubber stopper into which a glass tube provided with a stopcock and connected to a balloon containing 0.5 1 of oxygen was inserted.Oxygen was admitted to the flask every other minute by turning the stopcock. After all the oxygen had been consumed, the mixture was warmed to room temperature and stirred for 1.5 h. The dark red solution was poured into a large beaker kept in the hood to 4 PermaPzenl address : Istituto Dipartimentale di Chimica e Chimica Industriale, Universiti di Catania, Viale A. Doria 8, 95125 Catania, Italy. allow the solvent to evaporate. The residue was treated with a saturated, queous solution of arnrnonium chloride. The dipyridyl ditclluride was extracted with inethylene chloride (3 x 70 nil).The combined extracts were eva-porated to dryness. The residue was recrystallized from niethanol-water (12 : 2 v/v). The dark red crystals of di-2- pyridyl ditelluride (1.4g, 1 2yobased on Te) melted at 50.0--52.5'. This preparation of dipyridyl ditelluride is difficult to reproduce (Found: C, 29.45; H, 1.95. C,,H,N,Te, requires C, 29.2; H, 1.95). Dipole .Moment i2ileasztvements.-The electric dipole J.C.S. Perkin I1 t.L = + vy--x-2PPyPPy-XCOS 120")$ (2) pl, cr and a.17 The geometric parameter 8, the valency angle at the X atom, was taken from X-ray crystal structures of the diphenyl dichalcogenides Ph,X, (106" sin cc = pp,sin 12O0/pI (3) ~r)= 2 arcsin cos2(e -90)sin2+/2 +sin2(8-go)* (4) for X = Se; l8 99" for X = Te 19).The value of 2.20 D was used as the component group moment of pyridine, TABLE1 Polarization data * for and dipolc moments of di-2-pyridyl dichalcogenides, Py,X, (X = solution at 25 and 46" Cornpound t/T U P El0 *la P2m/cm3 Py2Se2 25 5.20 -0.582 2.2725 1.143 28 359.4 45 4.69 -0.629 2.2328 1.168 70 337.6 Py2Te2 25 3.45 -0.619 2.2723 1.142 66 330.6 45 3.05 -0.978 2.2325 1.168 49 268.3 Se,Te)t determined in benzene RD/Cm3 p/D 69.8 3.76 69.8 3.74 78.5 3.51 78.5 3.14 * For definition of the symbols see ref. 2. moments of Pv,Se, and Py,Te, were determined in benzene at 25 and 45" (amp;Q.Ol") using apparatus and techniques described earlier .I5 Experimental dipole moment values were calculated from the total solute polarization, obtained by extrapolation to infinite dilution (PZm)according to the Halverstadt-Kumler method ,I6 and from the molar re-fraction (RD,NaD line), which was considered to be equal to the electronic and atomic polarizations (Pe+ Pa).The dipole moment values ?(accuracy 40.02 11) and the polarization data are reported in Table 1.He1 Photoelectron Spectra.--The photoelectron spectra of diphenyl and di-2-pyridyl dichalcogenides were recorded 011 a Perkin-Elmer PS18 photoelectron spectrometer calibrated against the Xe and Ar lines. The reproducibility of the ionization energies (1,E.)was better than k0.05 eV. The samples were sublimed inside the reaction chamber, at the lowest temperatures at which sufficiently intense signals could be obtained (Ph2S, 60"; Ph,Se, 60"; Ph,Te, 110"; Py,S, 120"; I'y,Se, 120"; Py,Te, 130").The dipyridyl dichalcogenidc3s decomposed partially at these temperatures. ?'he bands caused by the decomposition products occurred at energies above 12 eV and did not influence the low energy bands on which the discussion is based. RESULTS AND DISCUSSION Dipole lWoments.-The experimental dipole moments (pexp)for Py2Se, and Py,Te, were analysed by the clas- sical vector addition method of component group mo- ments. Free rotation about the C-X bonds and a fixed skew conformation about the X-X bond characterized by a dihedral angle 4 was assumed (Figure 1). Free rotation implies that all possible rotational conform- ations about the C-X bonds are equally populated on the dimle moment time scale at 25 and 45".These assumn- tions are based on results of conformational studies Iof di-2-pyridyl disulphide "*3 The dihedral angles 4were obtained by matching calculated dipole moments, p,,~,, with experimental dipole moments, peXp. Relation (1) was employed to find pL,,lc. Equations (2)--(4) define pealc = (ap: + 2t.4 cos c( cos a)t t Data for Py2S2 are reported in ref. 4. p.~~.~~ bond moments, pry+ 1.25 D andThe C-X FPy-Te = 0.89 D,2were calculated earlier. The calculated dihedral angles + for which pealc == pexp 1FIGURE Geometrical parameters of di-(2-pyridyl) dichalcogenides are listed in Table 2, which also contains the corres- ponding angles for diphenyl dichalcogenides for com-parison purposes.These results indicate that the dihedral angles for the dipyridyl dichalcogenides are TABLE 2 Dihedral angles + for diary1 dichalcogenides Py2X2 and Ph,X, (X = S, Se, Te) in benzene at 25" as derived from dipole moment measurements C-X-X-C Dihedral angle 4 (")X Ph2X2 PY2x2 S 88.9. (-gob) * 100" (878) * Se 74.7 (97.1c) * 107 f Te 89.7 * (88.5d, * 1lOf * Dihedral angles determined bv X-rav structure analvsis. a Ref. 1. Rif. 21. Ref. 18. Kif. 19. CalculLted from data in ref. 4. f Present work. g Ref. 7. considerably larger than those found for the diphenyl derivatives. If one makes the assumption, justified by the values for the C-X-X bond angles, that the C-X-X-C c bonds are formed using? orbitals on the chalcogen atoms with their electron pairs in the ns orbitals stereo- 1981 283 chemically inactive, then the conformation with di-hedral angles of 98' between the two lone p electron pairs on the chalcogen atoms and the C-X groups would minimize lone pair-lone pair repulsion.The dihedral angles 4 in the pyridine derivatives (100-110") could be the result of more effective n-interaction between tlie lone electron pairs and the pyridine rings than possible in the diphenyl dichalcogenides resulting in reduced repulsion between the lone electron pairs1? The29536 dihedral angles for dipyridyl diclialcogenides increased in the sequence S Se Te pointing toward a decrease of lone electron pair repulsions with increasing X-X bond 8 12 16 8 12 16 lE/eV IE/eV 8 12 16 8 12 16 Ieuro;/ eV IE/eV N c4ol ww-mm'* Ph2Tez , m ,? =, I I-0 12 16 8 12 16 IE/eV I E/eV 2FIGURE He1 Photoelectron spectra of diphenyl and di-2-pyridyl dichalcogenides length and decreasing X-X bond strength.The tor- sional barriers about the X-X bonds are expected to decrease on going from tlie disulphick to the ditelluride. Although the dipole moments for Py,S, and Py,Se, are temperature-independent in the range 36---45", the dipole moment of dipyridyl ditelluride at 45"(3.14D) is smaller than the moment at 25" (3.51 D) (Table 1). This tem- perature dependence can be attributed to a low torsional barrier around the Te-Tc bond permitting the population of conformers having dihedral angles larger than the one observed at 25" to increase.Photoelectrovt (9.e.) Sjxctra.--Eight bands of formal n * In addition to the two ionizations from the nitrogen lone electron pair in Py,X, expected to occur between 9 and 10 eV, in both series some 0 ionizations are expected at ca. 9, 9.5, and 10 eV for the Te, Se, and S derivatives, respectively. origin are expected to be part of the low ionization energy (1.E.) region (13 eV) of the spectra of diphenyl and di-2-pyridyl dichalcogenides. Overlap of some of these bands and an intermingling of o-photoprocesses account for the apparent low resolution and complexity of the spectra* (Figure 2). This fact at present prevents an unambiguous assignment of the spectra of the di-2- pyridyl dichalcogenides, apart from the first partially split band.On the basis of qualitative steric and electronic arguments, the n-ionizations are anticipated to form four pairs of nearly degenerate components associated with possible combinations between the dichalcogen n-lone pairs and the x-ring orbitals of formal b, symmetry and the non-interacting x-ring orbitals of a2 symmetry. Partial assignment of the bands may be made on a cor- relative basis by reference to the spectra of methyl phenyl chalcogenide~,~~ anddimethyl dichalc~genides,~b pyridine.22 The assignments for the o-bands must be regarded as tentative (Table 3). The assignments summarized in Table 3 are in part supported by results of x-only semiempirical calculations.There exists a fairly good linear correlation (Y0.999; s.d. 0.08 eV) between the calculated SCF-YPP orbital energies Ej and the observed I.E. values of the PhXCH, compounds 9a equation (5). Because diphenyl di-chalcogenides are closely related to methyl phenyl 1.E.j = -1.010 6 Ej -1.543 4 (5) chalcogenides, equation (5) might also hold for the diphenyl derivatives. The theoretical 7 x-I.E. values for diphenyl dichalcogenides are reported in Table 3 to-gether with the observed I.E. values and the proposed assignments. Interesting features of the spectra of the diphenyl dichalcogenides are the modest splittings of the ~XX ionization bands (1)-(11) and (V)-(VI) (Table 3) and the similarity of their average values to the correspond- ing ionization energies in the PhXCH, conipo~nds.~~ Thus, very little interaction takes place between the two phenyl groups through the dichalcogen bridge.The splittings between the x-ring (asymmetric or non-inter- acting) MOs (111)-(IV) and the xxx (s) MOs (V)-(VI) are good indicators of conformational preferences in the gas phase. Other factors remaining constant, the intcr- action and thus the energy gap between two orbitals, depend crucially on their mutual orientation and reach a maximum in a coplanar arrangement. Because both the splittings of these 1.E.s A 0.80 (S),0.52 (Se), 0.28 eV (Te) and their absolute values arc very similar to those reported for the planar conformation of the PhXCH, systems9a A 0.85 (S), 0.60 (Se), 0.25 eV (Te), one can infer that the combination of two PhX moieties to give Ph2X, will cause only a trivial alteration in the inter- action between the chalcogen x-lone pair and n-ring -f The calculations were carried out using the Fabian para- metrization 23 with values of -1.8 and -0.3 eV for P(C-Te) and p(X-X), respectively.Experimentally determined structural parameters with the aryl groups in the C-X-X planes were used. 284 J.C.S. Perkin I1 orbitals and hence will not change the conformation of solvent and temperature effects (dipole moments 25"; each PhX fragment. p.e. spectra 60-130"). In addition, when deriving con- As a supplement of conformational information the formational information from p.e. data the possibility splittings of the 1.E.s (I) and (11) can be considered of secondary interactions between TC-and o-orbitals (Table 4).The near equality of A1.E. (1)-(11)for Ph,S, cannot be neglected. Accordingly, conformational and Py2S, in the gas phase can be regarded as evidence information based on p.e. data should be considered with TABLE3 Experimental and calculated ionization energies (eV) for diphenyl dichalcogenides Ph,X, x=s X = Se X == Te Band a Exp. Calc. Exp. Calc. Exp. Calc. Assignment b (1) 8.21 8.12 8.06 7.87 7.68 7.34 xxx(a)(W 8.45 8.37 8.54 8.23 8.08 7.80 8.8 } 9.14 CT ('re)9.14 9.14(111) 9.14 9.36 9.31 9.22 x-ring9.14 } 9.14(IV) (9.8) 9.53 (X) (1') 10.13 9.76 10.16 9.83 9.50 } XXX(S)10.42 } 9.97 9.57(VI) 11.4 11.14 10.22 0 10.50 11.7 10.96 d 12.1 d 11.80 I I12.29 12.20 , 12.15 12.7 12.5 12.2 x-ring 12.33 12.22 12.16 a The numbers refer to bands arising from x-photoprocesses.xxx(a) and xxK(s)denote orbitals of prevailing dichalcogen character corresponding to antibonding and bonding combinations with the ring orbitals, whereas x-ring denotes ring orbitals. e Broad band (see Figure 2) extending from the lower to the higher figure reported. for similar C-X-X-C dihedral angles as well as for caution. However, dipole moment analyses of the com- similar angles between the lone electron pairs on the two pounds in solution and p.e. data obtained in the gas phase chalcogen atoms. This close similarity of the dihedral agree that Ph,X, and Py,X, are conformationally angles is at variance with the results of dipole moment flexible molecules which assume a skew equilibrium con- measurements, which suggest a larger dihedral angle in formation.Very little information is transmitted by the Py,S, than in Ph,S,. The increase of A1.E. (1)-(11) X-X bridge between the two aromatic groups in a diary1 from Py,Se, to Ph,Se, is consistent with a decrease in the dichalcogenide molecule. TABLE4 Support of this investigation by a N.A.T.O. Research Grant Program is gratefully acknowledged. The synthetic part ofAverage values of the first two I.E.'s, =(I) -(11) and the investigation was supported by the Robert A. Welchtheir splittings AI.E.(I) -(11) (eV) for diphenyl and Foundation of Houston, Texas.cli-2-pyridyl dichalcogenides Compound -Ph2X2 PY2x2 0/589 Received, 22nd April, 19801 X l.E.(I) AI.E.(I) I.E.(I) A1.E.(I) REFERENCES -(11) -(11) -(111 -(11) G. C. Pappalardo, K. J. Irgolic and R. A. Grigsby, J,S 8.33 0.24 8.57 0.25 Se 8.30 0.48 8.35 0.26 Organometallic Chem., 1977, 133,311. G.C. Pappalardo, S. Gruttadauria, and K. J. Irgolic, J.sc 8.23 a 0.55 a 0.29 Organometallic Chem., 1975, 97,173.'re 7.88 0.44 7.85 M.Baldo, A. Forchioni, K. J. Irgolic, and G. C. Pappalardo, a Taken from ref. 9b. J. Amer. Chem. SOC., 1978, 100, 97. G. C. Pappalardo and G. Ronsisvalle, J.C.S. Perkirz 11,dihedral angles for these compounds in solution. For 1973, 701. the tellurium derivatives the p.e. data suggest that Py,- G. C. Pappalardo and S. Gruttadauris, Gazzetta, 1975, 195, Te, should have a dihedral angle closer to 90"than Ph,-427.G.C.Pappalardo and E. Tondello, Phosphorus and Sulfur,Te,. In solution the opposite trend was found. 1976, 1, 5. N. V. Raghavan and K. Seff, Acta Cryst., 1977, B33, 386.The conclusions concerning the dihedral angles in * M. F. Guimon, C. Guimon, and G. Pfister-Guillozo, Tetra-Ph,X, and Py,X, drawn from p.e. data obtained in the hedron Letters, 1975, 441,and references therein. gas phase and from dipole moment measurements on G. Tschmutova and 13. Bock, 2. Naturforsch., 1976, 31B, the dissolved dichalcogenides do not agree. The dif- (a).1611; (b) 1616. lo H. Bock and G. Wagner, Ang. Chem. Internat. Edn., 1972,ferences can be attributed to perturbation by the 11, 150; Ckem.Ber., 1974, 107,68. 1981 11 J. P.Snyder and L. Carlsen, J. Amer. Chem. SOC.,1977, 99, 2931. l2 D.L. Klayman and T. S. Griffin, J. Amer. Chem. SOC.,1973, 95, 197. 13 H. G. Mautner, S. H. Chu, and C. M. Lee, J. Org. Chem., 1962, 27,3671. 14 W. S. Haller and K. J. Irgolic, J. Organometallic Chem., 1972, 38,97. 15 G.C. Pappalarcio and S. Pistara, J. Chem. Eng. Data, 1972, 17,2. 16 I. I;. Halverstadt and W. D. Kumler, J. Amer. Chem. SOC., 1948, 64,2988. 1rsquo; G. C. Pappalardo and G. Ronsisvalle, J. Mol. Structure, 1973, 16, 167. 18 R.E.Marsh, Acta Cryst., 1952, 5, 458. lS G.Llabres, 0.Dideberg, and L. Dupont, Acta Cryst., 1972,B28,2433. A. L. McCleEan, lsquo; Tables of Experimental Dipole Moments,rsquo; Freeman, San Francisco, 1963. 21 J. D. Lee and M. W. Bryant, Acta Cryst. 1969, B25,2094; see also papers quoted in ref. 6. 22 E.Ileilbronner, V. Hornung, F. 1rsquo;. Pinkerton, and S. F. Thames, Helu. Chim. Ada, 1972, 55, 289. 23 J. Fabian, A. Mehlhorn, and R. Zahradnik, Theov. Chim. Ada, 1968, 12,247. 24 M. Klessinger and P. Rademaker, A$zgew. Chem. Internat. Edn., 1979, 18,826.
机译:1981 281 偶极矩和氦(i) Di-2-吡啶基和二苯基二硫族化合物 R2X2 (X = S, Se, or Te) 构象的光电子能谱研究 作者:Francesco P. Colonna 和 Giuseppe Distefano, Laboratorio dei Composti del Carbonio Contenenti Eteroatomi del CNR, Ozzano Emilia, Bologna, Italy Vinicio Galasso, lstituto di Chimich, Universiti di Trieste, 34127 Trieste, Italy Kurt J. Irgolic, Giuseppe C. Pappalardo,*t 和 Leslie Pope,德克萨斯农工大学化学系,美国德克萨斯州大学城 77843研究了苯溶液中二-2-吡啶基硫族化合物在25和45“处的偶极矩以及二-2-吡啶基和二苯基硫族化合物R,X(X = S,Se或Te)的He1光电子能谱,以获得有关这些分子在溶液和气相中的构象的信息。计算出的二吡啶基二硫族化合物(pCalc= pexp)的C-X-X-C二面角(100-1 1Oo)比二苯衍生物的二面角至少大10英寸。这些结果表明,X原子和吡啶基之间的x相互作用比X原子和苯环之间的相互作用更有效,从而减少了硫族(X)原子的孤电子对之间的排斥,并降低了X-X键的扭转势垒。基于光电子能谱数据推导的苯基衍生物与相应的二吡啶基二硫族化合物之间的二面角变化与偶极矩数据的结果不一致。气相和溶液结果之间的这种差异可能是由溶剂和温度效应或x和~7轨道之间的二次相互作用引起的。偶极矩和光电子光谱数据表明,二芳基二硫族化合物具有构象柔性,具有偏平衡构象,两个芳基之间的相互作用很小。早前通过偶极矩 1,2 和 N.M.R. 光谱法研究了二苯基二硫族化合物 (C,H,),X, (X = S, Se, or Te)的构象^.^ 为了阐明二芳基硫族化合物的一致性特征对芳基的依赖性,特别注意 C-X-X-C 扭转角和二硫族化合物基团的电子结构, 已经对二-2-吡啶基二硫族化合物Py,X(Py=2-吡啶基,X=S,Se或Te)进行了研究。溶液 4-6 和固态中二-2-吡啶基二硫化物的构象是已知的。没有关于类似的硒和碲化合物的结构和构象信息。在这项研究中,在苯中测量了 Py、Se 和 Py、Te 的电偶极矩,以 25“ 和 45” 阐明这些分子在溶液中的构象。He1光电子能谱是探测气相中硫族化合物构象偏好的有用工具。对通式 R-X-X-R(X = As、N、0、P、S 或 Se)*-11 的化合物的几项研究确定,第一光电子带的分裂是由 X 原子的孤电子对之间的二面角决定的。采用He1光电子能谱研究了二苯基二硫族化合物和二-2-p吡啶基硫族化合物。简要讨论了气态分子和溶解分子构象之间的差异。实验 二苯基二硫族化合物和二-2-吡啶基二硫化物可从以前的~tuciies.l~~-~Dz-Z-fi-yt4iyZ DiseZenzde.-Seleiiium(3.0g,0.038摩尔悬浮于乙二醇单甲醚(150 1111)中。将硼酸钠(1.0g,0.027mol)加入到氮气下保持的悬浮液中,并在冰水浴中冷却.12在初始反应消退后,将混合物回流1.5 h.2-溴吡啶(4.1g,0.026mol)。将混合物回流(m.7 h)至t.1.c。表明大部分溴吡啶已发生反应。将溶液冷却至室温,然后用氯仿萃取。分离出的氯仿层用水洗涤。氯仿的蒸发产生残留物,该残留物溶解在热己烷中。加入乙醇直至结晶开始。在冷却黄色晶体(2.8 g)分离,并用热己烷重结晶。二-2-吡啶基二硒化物(1.6g,40%基于溴吡啶)的黄色针状晶体在4'7.5-48.5“(lit.,13 47.5-48.0”)处熔化。将2-吡啶基溴化镁(5.1g,0.21mol)加入到氮气下保持的四氢呋喃(20ml)中的溴乙酯(1.2g,0.01mol)溶液中。初始反应消退后,将Z-溴吡啶(16.8g,0.10mol)和溴乙酯(5.0g,0.046mol)在四氢呋喃(100ml)中的溶液滴在镁车削上。加入所有溴吡啶后,将混合物回流4.5小时。 Di-2-pyridyZ Dite1Zuride.-根据Haller和Irg01ic报道的程序制备二碲化物.l~将上述格氏试剂转移到锥形瓶中。加入碲(7.5g,0.059mol)。将混合物轻轻加热20分钟,然后在冰水浴中冷却。然后用橡胶塞封闭烧瓶,将装有旋塞的玻璃管插入其中,并连接到含有 0.5 1 氧气的气球。通过转动旋塞阀,每隔一分钟将氧气加入烧瓶。在消耗完所有氧气后,将混合物加热至室温并搅拌1.5小时。将深红色溶液倒入一个大烧杯中,该烧杯保存在引擎盖中,地址为4 PermaPzenl : Istituto Dipartimentale di Chimica e Chimica Industriale, Universiti di Catania, Viale A。Doria 8, 95125 卡塔尼亚, 意大利.让溶剂蒸发。残留物用饱和的氯化铵水溶液处理。用二氯乙烷(3 x 70 nil)萃取二吡啶二氯化物。将合并的提取物蒸发至干燥。残留物由乙醇水(12 : 2 v / v)重结晶。暗红色晶体为二-2-吡啶基二碲化物(1.4g,1 2年基Te)在50.0--52.5'处熔化。这种二吡啶基二碲化物的制备是难以复制的(发现:C,29.45;H,1.95。C,,H,N,Te,需要C,29.2;H,1.95%)。偶 极 子。Moment i2ileasztvements.-电偶极子 J.C.S. Perkin I1 t.L = + v%y--x-2PPyPPy-XCOS 120“)$ (2) pl, cr and a.17 几何参数 8,即 X 原子处的价角,取自二苯基硫族化合物 Ph,X 的 X 射线晶体结构,(106” sin cc = pp,sin 12O0/pI (3) ~r)= 2 arcsin [cos2(e -90)sin2+/2 +sin2(8-go)]* (4) for X = Se;l8 99“ 代表 X = Te 19)。以2.20 D的值作为吡啶的组矩, 表1 二-2-吡啶基二硫族化合物的极化数据 * 和二极矩, Py,X, (X = 25 和 46“ Cornpound t/T U P El0 *la P2m/cm3 Py2Se2 25 5.20 -0.582 2.2725 1.143 28 359.4 45 4.69 -0.629 2.2328 1.168 70 337.6 Py2Te2 25 3.45 -0.619 2.2723 1.142 66 330.6 45 3.05 -0.978 2.2325 1.168 49 268.3 Se,Te)t 在苯中测定 RD/Cm3 p/D 69.8 3.76 69.8 3.74 78.5 3.51 78.5 3.14 * 符号的定义见参考文献 2。使用前面描述的仪器和技术在苯中测定 25 和 45“ (&Q.Ol”) 处的 Pv、Se 和 Py、Te 的矩。I5 实验偶极矩值是根据Halverstadt-Kumler方法I6外推无限稀释(PZm)得到的总溶质极化和摩尔再分数(RD,NaD线)计算得出的,摩尔再分数(RD,NaD线)被认为等于电子极化和原子极化(Pe+ Pa)。偶极矩值?(精度 40.02 11)和偏振数据见表1.He1 光电子能谱.--011 Perkin-Elmer PS18 光电子能谱仪根据 Xe 和 Ar 谱线校准了二苯基和二-2-吡啶基二硫族化合物的光电子能谱。电离能的重现性 (1,E.)优于k0.05 eV。样品在反应室内升华,在最低温度下可以获得足够强的信号(Ph2S,60“;铑,硒,60“;Ph,Te,110“;Py,S,120“;I'y,Se,120“;Py,Te,130“)。二吡啶基二硫族化合物3s在这些温度下部分分解。?'分解产物引起的能带发生在12 eV以上的能量下,不会影响讨论所依据的低能带。结果与讨论 偶极子 lWoments.-采用组分群向量加法分析了 Py2Se 和 Py,Te 的实验偶极矩 (pexp)。假设围绕 C-X 键的自由旋转和围绕 X-X 键的固定偏斜构象,其特征是二面角 4(图 1)。自由旋转意味着所有关于 C-X 键的可能的旋转一致性在 25 和 45“ 的暗光矩时间尺度上都同样填充。这些假设是基于构象研究的结果 Iof di-2-pyridyl disulphide “*3 二面角 4 是通过将计算出的偶极矩 p,,~,,与实验偶极矩 peXp 相匹配而得到的。关系(1)用于求pL,,lc。方程 (2)--(4) 定义 pealc = (ap: + 2t.4 cos c( cos a)t t Py2S2 的数据在参考文献 4 中报告。 p.~~.~~ 键矩,pry+ 1.25 D 和 C-X FPy-Te = 0.89 D,2 是之前计算的。计算出的二面角 + pealc == pexp 1图 表 2 中列出了二(2-吡啶基)二硫族化合物的几何参数,其中还包含用于比较目的的二苯基硫族化合物的相应角。这些结果表明,二吡啶基二硫族化合物的二面角为表 2 二硫族化合物 Py2X2 和 Ph,X, (X = S, Se, Te) 在苯中的二面角 + 25“ 的二面角,由偶极矩测量 C-X-X-C 二面角 4 (”)X Ph2X2 PY2x2 S 88.9 得出。(-gob) * 100“ (878) * Se 74.7 (97.1c) * 107 f Te 89.7 * (88.5d, * 1lOf * 二面角确定 bv X-rav 结构分析。 a 参考文献 1.里夫。21. 参考文献 18.基夫。19. 根据参考文献 4 中的数据计算得出。f 目前的工作。g 参考文献 7.比二苯衍生物中发现的要大得多。如果假设 C-X-X 键角的值证明,C-X-X-C c 键是用?硫族原子上的轨道及其电子对在 ns 轨道立体- 1981 283 中是化学无活性的,那么硫族原子和 C-X 基团上两个孤 p 电子对之间具有 98' 二面角的构象将最小化孤对-孤对排斥。吡啶衍生物 (100-110“) 中的二面角 4 可能是孤电子对和吡啶环之间比二苯基硫族化合物更有效的 n 相互作用的结果,从而减少孤电子对之间的排斥力1?29536 二吡啶基二鞘锷的二面角在序列 S < Se < Te 中增加,表明孤电子对排斥随着 X-X 键的增加而减少 8 12 16 16 8 12 16 lE/eV IE/eV 8 12 16 8 12 16 I€/ eV IE/eV N c4ol ww-mm'* Ph2Tez , m ,?=, I I-0 12 16 8 12 16 IE/eV I E/eV 2图 He1 二苯基和二-2-吡啶基二硫族化合物长度和X-X键强度降低的光电子能谱。预计 X-X 键的扭转势垒在从二硫化物到二碲化物时会减少。尽管 Py,S 和 Py,Se 的偶极矩在 36---45“ 范围内与温度无关,但二吡啶基二碲化物在 45”(3.14D) 处的偶极矩小于 25“ (3.51 D)(表1)。这种温度依赖性可归因于 Te-Tc 键周围的低扭转势垒,允许具有大于在 25“ 处观察到的二面角的构象体数量增加。光电 (9.e.)Sjxctra.--八个带的形式 n * 除了 Py,X 中氮孤电子对的两次电离,预计发生在 9 到 10 eV 之间,在这两个系列中,Te、Se 和 S 衍生物的电离分别约为 9、9.5 和 10 eV。原产地预计将是二苯基和二-2-吡啶基二硫族化合物光谱的低电离能(1.E.)区域(<13 eV)的一部分。其中一些波段的重叠和o光过程的混合解释了光谱的明显低分辨率和复杂性*(图2)。目前,这一事实阻止了除第一部分分裂带外,二-2-吡啶基二硫族化合物的光谱的明确分配。在定性空间和电子论证的基础上,预计n电离将形成四对近乎简并的分量,这些分量与双硫族n-孤对和形式b的X环轨道、对称性和非相互作用的X环轨道之间的可能组合2对称性相关。通过参考甲基苯基硫族化物~,~~和二甲基硫族~硫化物,~b吡啶的光谱,可以对条带进行部分分配。22 O波段的分配必须被视为暂定的(表3)。表 3 中总结的分配部分得到了仅 x 的半经验计算结果的支持。计算出的SCF-YPP轨道能量Ej与观察到的PhXCH化合物9a的I.E.值之间存在相当好的线性相关性(Y0.999;标准差0.08 eV)[方程(5)]。由于二苯基二硫族化合物与甲基苯基 1.E.j = -1.010 6 Ej -1.543 4 (5) 硫族化合物密切相关,因此等式 (5) 也可能适用于二苯基衍生物。理论上的7 x-I.E.表3中报告了二苯基二硫族化合物的值,并附有观测到的I.E.值和建议的分配。二苯基二硫族化合物光谱的有趣特征是~XX电离带(1)-(11)和(V)-(VI)(表3)的适度分裂,以及它们的平均值与PhXCH中相应的电离能的相似性,conipo~nds.~~因此,通过硫族电桥的两个苯基之间发生的相互作用很少。x环(不对称或非相互作用)MOs(111)-(IV)和xxx(s)MOs(V)-(VI)之间的分裂是气相构象偏好的良好指标。其他因素保持不变,即两个轨道之间的内作用和能量隙,在很大程度上取决于它们的相互方向,并在共面排列中达到最大值。因为这两个 1.E.s [A 0.80 (S),0.52 (Se), 0.28 eV (Te)] 及其绝对值与 PhXCH 平面构象的绝对值非常相似,系统9a [A 0.85 (S), 0.60 (Se), 0.25 eV (Te)],可以推断,两个 PhX 部分的组合得到 Ph2X,只会导致硫族 x 孤对电子和 n 环 -f 之间的相互作用发生微不足道的改变 使用费边参数化 23 进行计算P(C-Te) 和 p(X-X) 的值分别为 -1.8 和 -0.3 eV。使用实验确定的C-X-X平面中芳基的结构参数。284 J.C.S. Perkin I1 轨道,因此不会改变溶剂的构象和温度效应(偶极矩 25“;每个 PhX 片段 p.e. 光谱 60-130”)。此外,在推导构象信息时,作为构象信息的补充,从p.e.数据中得出的构象信息,可以考虑1.E.s(I)和(11)之间TC和o轨道之间的次级相互作用的可能性分裂(表4)。A1.E. (1)-(11)对于Ph,S的近似相等,不容忽视。 因此,气相中的构象和Py2S可以被视为基于p.e.数据的证据信息,应考虑表3 二苯基二硫族化合物Ph,X的实验和计算的电离能(eV),x=s X = Se X == Te Band a Exp. Calc. Exp. Calc. Exp. Calc. Exp. Calc. Assignment b (1) 8.21 8.12 8.06 7.87 7.68 7.34 xxx(a)(W 8.458.37 8.54 8.23 8.08 7.80 8.8 } 9.14 CT ('re)9.14 9.14(111) 9.14 9.36 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.36 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 31 9.22 x-ring9.14 } 9.14(IV) (9.8) 9.53 (X) (1') 10.13 9.76 10.16 9.83 9.50 } XXX(S)10.42 } 9.97 9.57(VI) 11.4 11.14 10.22 0 10.50 11.7 10.96 d 12.1 d 11.80 I I12.29 12.20 , 12.15 12.7 12.5 12.2 x 环 12.33 12.22 12.16 a 数字是指由 x-photoprocesses.xxx(a)和xxK(s)产生的能带,表示与环轨道的反键和键合组合相对应的具有主要双硫性特征的轨道, 而 X 环表示环轨道。e 宽带(见图2)从报告的较低数字延伸到较高数字。用于相似的 C-X-X-C 二面角以及谨慎。然而,偶极矩分析了溶液中两磅孤电子对之间的相似角度,并在气相硫族原子中获得 p.e. 数据。这种二面体的紧密相似性同意Ph,X和Py,X是构象角,这与偶极矩柔性分子的结果不一致,偶极矩柔性分子假设偏平衡测量,这表明形成中的二面角更大。Py,S 传输的信息比 Ph,S 传输的信息少。(1)-(11)X-X桥在日记1中两个芳香族基团之间从Py,Se到Ph,Se的增加与硫族化合物分子的减少一致。表4 感谢 N.A.T.O. 研究资助计划对这项调查的支持。合成部分的平均值为前两个,即的, =(I) -(11) 并且该调查得到了 Robert A. Welchtheir 分裂 AI.E.(I) -(11) (eV) for diphenyl and Foundation of Houston, Texas.cli-2-pyridyl dichalcogenides Compound -Ph2X2 PY2x2 [0/589 Received, 22nd April, 19801 X l.E.(I) AI.E.(I) I.E.(I) I.E.(I) A1.E.(I) REFERENCES -(11) -(11) -(11) -(11) G. C. Pappalardo, K. J. Irgolic 和 R. A. Grigsby, J,S 8.33 0.24 8.57 0.25 Se 8.30 0.48 8.35 0.26 有机金属化学, 1977, 133,311.G.C. Pappalardo, S. Gruttadauria, and K. J. Irgolic, J.sc 8.23 a 0.55 a 0.29 有机金属化学, 1975, 97,173.'re 7.88 0.44 7.85 M.Baldo, A. Forchioni, K. J. Irgolic, and G. C. Pappalardo, a 摘自参考文献 9b. J. Amer. Chem. SOC., 1978, 100, 97.G. C. Pappalardo 和 G. Ronsisvalle, J.C.S. Perkirz 11,溶液中这些化合物的二面角。1973 年,701 人。碲衍生物的 PE 数据表明,Py,- G. C. Pappalardo 和 S. Gruttadauris, Gazzetta, 1975, 195, Te,二面角应该比 Ph,-427.G.C.Pappalardo 和 E. Tondello,磷和硫,Te,更接近 90“。在解决方案中发现了相反的趋势。1976, 1, 5.N. V. Raghavan 和 K. Seff, Acta Cryst., 1977, B33, 386.关于二面角的结论 * M. F. Guimon, C. Guimon, and G. Pfister-Guillozo, Tetra-Ph,X, and Py,X, from p.e. data obtained in the hedron Letters, 1975, 441,and references in the hedron Letters, 1975, 441,and referencein.气相和 G. Tschmutova 和 13 上的偶极矩测量。博克,2。Naturforsch.,1976,31B,溶解的硫族化合物不同意。dif- (a).1611;(b) 1616年。lo H. Bock 和 G. Wagner, Ang. Chem. Internat.Edn., 1972,ferences 可归因于 11, 150 的扰动;Ckem.Ber.,1974,107,68。1981 11 J. P.Snyder and L. Carlsen, J. Amer. Chem. SOC.,1977, 99, 2931.l2 D.L. Klayman 和 T. S. Griffin, J. Amer. Chem. SOC.,1973, 95, 197.13 H. G. Mautner, S. H. Chu, and C. M. Lee, J. Org. Chem., 1962, 27,3671.14 W. S. Haller 和 K. J. Irgolic, J. 有机金属化学, 1972, 38,97.15 G.C. Pappalarcio 和 S. Pistara, J. Chem. Eng. Data, 1972, 17,2.16 一、一、。Halverstadt 和 W. D. Kumler, J. Amer. Chem. SOC., 1948, 64,2988.1' G. C. Pappalardo 和 G. Ronsisvalle, J. Mol. Structure, 1973, 16, 167.18 R.E.Marsh, Acta Cryst., 1952, 5, 458.lS G.Llabres, 0.Dideberg, and L. Dupont, Acta Cryst., 1972,B28,2433.A. L. McCleEan,“实验偶极矩表”,弗里曼,旧金山,1963 年。21 J. D. Lee 和 M. W. Bryant, Acta Cryst. 1969, B25,2094;另见参考文献6中引用的论文。22 E.Ileilbronner, V. Hornung, F. 1'.平克顿和 SF 泰晤士河,Helu。噗噗。艾达,1972,55,289。23 J. Fabian, A. Mehlhorn, 和 R. Zahradnik, Theov.噗噗。艾达,1968 年,12,247 页。24 M.克莱辛格和P.拉德梅克,A$zgew。Chem. Internat.Edn., 1979, 18,826.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号