...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Ionization of beta;-carbolines in concentrated hydroxide solutions
【24h】

Ionization of beta;-carbolines in concentrated hydroxide solutions

机译:β-咔啉在浓氢氧化物溶液中的电离

获取原文
           

摘要

J. CHEM. SOC. PERKIN TRANS. II 1986 Ionization of p-Carbolines in Concentrated Hydroxide Solutions M.A. MuAoz Pbrez, M. C. Carmona Guzmhn, J. Hidalgo Toledo, and M. Bal6n Almeida Departamento de Fisicoquimica Aplicada, Facultad de Farmacia, Universidad de Sevilla, Sevilla 4 10 12, Spain ~~~~~ ~~ ~ ~~ The ionization of several P-carbolines (norharman or P-carboline, harman, harmine, harmaline, and ~ tetra hydroharmine) in concentrated potassium hydroxide solutions have been examined. The pK, values, calculated using the H-acidity function, indicate that these compounds are stronger acids than indole and their acidities increase with the degree of aromaticity of the compounds in the order tetrahydro dihydro fully aromatic P-carbolines. This sequence can be interpreted in terms of resonance stabilization of the indolate anion.Because of their pharmacological properties, P-carbolines (I)-(HI) have been the subject of extensive chemical and bio- chemical investigation. lP6,tInterest in P-carboline chemistry has recently been increased by reports of their inhibitory in- fluence toward monoamine oxidase (MAO),' serotonin uptake by synaptosomas,8 and the sodium pump.' The acid-base behaviour of P-carbolines has long been of interest and much recent work has focussed on this sub- ject.I0-l5 Owing to the acidic indole NH group and the basic non-indole nitrogen atom on the P-carboline skeleton, these compounds can exist in aqueous solutions, at least, as three differently charged species, whose equilibria, exemplified for P-carboline (Ia) as the model compound, are depicted in the Scheme.Whereas the protonation equilibria on the non-indole nitrogen atom have been extensively investigated and pKa values are available,' O-' information about the dissociation of the indole NH group is very scanty. It must be noted that this group is feebly acidic 16-1 'and dissociates only in concen- trated hydroxide solution and, therefore, an acidity function must be used to provide the pK, values. In view of the paucity of data, it was of interest to examine the dissociation equilibria of P-carbolines in concentrated hydroxide solution. This paper presents pKa data on the H-acidity scale of several P-carboline derivatives of biochemical and pharmacological interest.In particular the influence of the degree of aromaticity was investigated to provide information of this effect on acidity. Experimental P-Carboline (Ia), harman (Ib), harmine hydrochloride' hydrate (Ic), and harmaline hydrochloride di hydrate (II), were pur- chased from EGA Chemie and were used as received. These compounds were pure by t.1.c. Tetrahydroharmine (111) was prepared from harmaline by reduction with sodium boro- hydride and purified by recrystallization from methanol. Stock solutions of these compounds were prepared in methanol and stored in the dark to avoid photo-oxidation. The hydroxide solutions were prepared from Merck A.R. potassium hydroxide as described by Yagil l6 and their concentrations were deter- mined by titration with standardized sulphuric acid solutions.The ionization constants were determined by the spectro- photometric method. * The necessary solutions were prepared by pipetting portions of each alkaloid solution (5amp;100 PI) into hydroxide solution (5 cm3) in sufficient amounts to give accurately measurable absorbances (final t fl-Carboline is named systematically as pyrido3,4-bindole; trivial names are used throughout. concentrations ca. 1 x ~PM).After thorough mixing, the final solutions were kept in a constant temperature bath at 25.0 f0.1 "C. In some cases where turbid solutions were formed, warming in hot water was necessary to bring about complete dissolution. Absorption spectra and absorbance measurements were made with a Lambda-5 spectrophotometer whose cell com- partment was also thermostatted at 25.0 amp; 0.1 "C.Usually, a hydroxide solution of the same concentration to the test solution was used as reference.Restilts ad Discussion As expected, deprotonation of P-carbolines significantly affects their electronic absorption spectra, since the indole NH group is part of a conjugated system. The first two columns in the Table show the position of the absorption maxima, A,,,,,., of the neutral species and their conjugated bases. As can be seen in going from dilute to concentrated hydroxide solution, the intensities of the bands of the acid forms of fully aromatic P-carbolines decreased and new absorp- tion bands or a shoulder (harmine) appeared at ca.360-380 nm where the acid forms did not absorb. These systems showed good isosbestic points. Partially reduced P-carbolines behaved differently to the other members of the series. Thus, the intense absorption band of harmaline in its acid form at 330 nm decreased upon proton- ation but no new band appeared. On the other hand, the positions of the absorption maxima of tetrahydroharmine were unaffected by changes in hydroxide concentration although a considerable increase in absorbance occurs at 3amp;340 nm upon conversion into base. However, it should be noted that the spectrum of the base form of this latter compound could not be obtained because of the turbidity of its more concentrated hydroxide solution.The ionization ratios for all the other compounds were calculated from equation (1) where dB-and dBHare the absorb- ances at the chosen wavelengths of the fully ionized species and the non-ionized species, respectively and d is the absorbance at the wavelength monitored for various intermediate hydroxide concentrations. In obtaining these data we used points corres- ponding to log 1 values within k0.75,because clear deviations from parallel behaviour were observed beyond these limits. The effect of varying the wavelength at which ionization ratio measurements were taken was checked in the case of harman. In other cases, the calculation of I was performed at only one wavelength, as listed in the Table. 1574 J. CHEM. SOC.PERKIN TRANS. II 1986 Table. Absorption characteristics and ionization data for P-carbolines in KOH at 25 "C Compound BH, hmax,/nm B-7 hmax./nm h/nm a -d log I/d H-rc PK, 338, 348 380 380 1.00 k0.02 0.991(7) 14.49 amp; 0.07 334, 346 375 334 0.93 k 0.16 0.992(6) 14.50 amp; 0.07 375 0.98 f0.03 0.986(7) 14.45 amp; 0.09 298 298, 362 (sh) 362 1.02 f0.06 0.997(9) 14.43 F 0.02 330 330 330 1.02 amp; 0.2 0.996(5) 15.34 amp; 0.03 270, 296 270, 296 276, 304 15.6 amp; 0.2 a Wavelength employed for measurement. I.e.slopes of plots of log I against H-. Correlation coefficients of these plots. The figures in parentheses are the number of points taken. (I 1 a; R' = ~2 = H (11) R' =CH3, R2 =OCH3 (111) R' = CH3 , R2 =OCH3 b; R' =CH3 , R2= H C; R' = CH, , R~ =OCH, (la) Scheme. Ionization equilibria of P-carboline In examining the ionization behaviour of P-carbolines it seemed appropriate to consider the H-acidity function stablished by Yagil16 to describe the ionization of indoles in concentrated hydroxide solution.Plots of log 1 against H-gave straight lines whose slopes and correlation coefficients are reported in the Table. It can be noted that the values of these slopes were sufficiently close to unity to permit the conclusion that the ionization of these compounds follows the H-acidity function. Hence, the pK, values were calculated using equation (2) and the data are reported in the Table. As can be seen, the pK, value of harman is fairly independent of the wavelength used for the ionization ratio determination. On the other hand, it is in very good agreement with the value of 14.6 previously reporkd.' In the case of tetrahydroharmine, since a spectrophotometric titration curve was impossible to obtain because of the afore- mentioned solubility problems, we have employed the method of Marioni and Calmon l9 to estimate its pK, value.According to this method, which only requires a part of the titration curve, the pK, value can be found, by using equation (3), from the slope of the plot of d against (dBH-d) h-, where h-= antilog (-H-). Since the error in this method may be important, absorbance measurements were carried out at two different wavelengths, the pK, of tetrahydroharmine reported in the Table being the average of these results.Inspection of the pK, data in the Table reveals that p-carbolines are stronger acids than indole (pKa 16.97). Thus, annelation of the pyridine ring to indole to give p-carboline causes an increase of the acidity by 2.5 pK, units. The higher acid strength of P-carboline compared with indole follows the trend of the five-membered heterocycles pyrrole, imidazole, and pyrazole and their benzologues indole, benzimidazole, and indazole; the extension of conjugation raises the acidity due to resonance stabilization of the anions.' However, the increase of acidity in going from indole to 0-carboline compared with the increase of 0.5 pKa units observed between pyrrole and indole seems exceptionally high.Unfor- tunately, the different effects of benzene and pyridine annelation cannot be discussed because the acid strength of the parent compound 6-azaindole is unknown. By supposing that annel- ation effects of benzene and pyridine rings are additive, a pK, value of ca. 15 could be predicted for 6-azaindole. It should be also noted that the acidities of P-carbolines increase with the degree of aromaticity of the p-carboline skeleton in the order tetrahydro dihydro fully aromatic P-carbolines as would be expected for the resonance stabiliz- ation of the indolate anions. Finally, we can briefly comment on the rather small influence of methoxy and methyl substitution at C-7 and C-1 of the p-carboline ring, because these substituents do not make possible additional resonance forms for the anion.In contrast, an exceptionally high increase in acidity occurred with the sub-stitution of a methyl group on the pyridine nitrogen atom, as illustrated by 2-methyl-P-carboline, whose pK, is 10.9.'' In this case it is evident that the positively charged quaternary nitrogen atom is an additional factor for stabilization of the anions. J. CHEM. SOC. PERKIN TRANS. II 1986 Acknowledgements We gratefully acknowledge financial support from the Cornision Asesora de Investigacion Cientifica y Tecnica of Spain. References 1 R.A. Abramovitch and I. D. Spencer, Ado. Heterocycl. Chem., 1964, 3, 79. 2 K. Stuart and R. Woo-Ming, Heterocycles, 1975, 3, 223. 3 R.H.F. Manske, lsquo;The Alkaloids,rsquo; Academic Press, New York, 1965, vol. VIII, pp. 47-53. 4 V. Snieckus, lsquo;The Alkaloids,rsquo; ed. R.H. F. Manske, Academic Press, New York, 1968, vol. XI, pp. 1-40. 5 D. H. Aarons, G. V. Rossi, and R. F. Orzechowski, J. Pharm. Sci., 1977,66, 1244. 6 R. G. Rahwan, Toxicol. Appl. Pharmacol., 1975, 34, 3. 7 B. T. Ho, W. M.McIsaac, K. E. Walker, and V. Estevez, J. Pharm. Sci., 1968, 57, 269, 1368. 8 N. S. Buckholtz and W. 0.Boggan, LiJe Sci., 1977, 20, 2093. 9 M. Canessa, E. Jaimovich, and M. de la Fuente, J. Memhr. Bio(., 1973, 13, 263. 10 R.Sakuros and K. P. Ghiggino, J. Photochem., 1982, 18, I. 11 0.S. Wolfbeis and E. Furlinger, Monatsh. Chem., 1982, 113, 509. 12 0.S. Wolfbeis and E. Furlinger, 2. Phys. Chem. Neue Folge, 1982, 129, 171. 13 K. T. Douglas, R. K. Sharma, J. F. Walmsley, and R.C. Hider, Mnl. Pharmacol., 1983, 23, 614. 14 F. Tomas Vert, I. Zabala Sanchez, and A. Olba Torrent, J. Photochem., 1983, 23, 355. 15 F. Tomas Vert, I. Zabala Sanchez, and A. Olba Torrent, J. Photachem., 1984, 26, 285. 16 G. Yagil, J. Phys. Chem., 1967, 71, 1034. 17 G. Yagil, Tetrahedron, 1967, 23, 2855. 18 A. Albert and E. P. Serjeant, lsquo;The Determination of Ionization Constants,rsquo; Chapman and Hall, London, 1971, 2nd edn. 19 P. Maroni and J. P. Calmon, Bull. Sac. Chim. Fr., 1964, 519. Received 6th November 1985; Paper 51 1950
机译:J. CHEM. SOC. PERKIN TRANS. II 1986 浓缩氢氧化物溶液中对咔啉的电离 M.A. MuAoz Pbrez, M. C. Carmona Guzmhn, J. Hidalgo Toledo, and M. Bal6n Almeida Departamento de Fisicoquimica Aplicada, Facultad de Farmacia, Universidad de Sevilla, Sevilla 4 10 12, Spain ~~~~~ ~~ ~ ~~ 已经研究了几种 P-咔啉(norharman 或 P-咔啉、harman、harmine、harmaline 和 ~ tetra hydroharmine)在浓氢氧化钾溶液中的电离。使用H-酸度函数计算的pK值表明,这些化合物是比吲哚更强的酸,并且它们的酸度随着化合物的芳香度而增加,顺序为四氢<二氢<完全芳香族对咲啉。该序列可以用吲哚酸阴离子的共振稳定来解释。由于其药理学特性,对卡波啉(I)-(HI)一直是广泛的化学和生化研究的主题。lP6,t最近对P-咔啉化学的兴趣因对单胺氧化酶(毛)的抑制作用,突触体对血清素的摄取,8和钠泵的报道而增加。长期以来,人们对对咔啉的酸碱行为一直很感兴趣,最近的许多工作都集中在这一子项目上。I0-l5 由于 P-咔啉骨架上的酸性吲哚 NH 基团和碱性非吲哚氮原子,这些化合物至少可以存在于水溶液中,作为三种不同电荷的物质,其平衡,例如以 P-咔啉 (Ia) 为模型化合物,在方案中描述。关于吲哚NH基团解离的“O-”信息非常少。必须注意的是,该基团是弱酸性的16-1',并且仅在浓缩的氢氧化物溶液中解离,因此,必须使用酸度函数来提供pK值。鉴于缺乏数据,研究P-咔啉在浓氢氧化物溶液中的解离平衡是很有意思的。本文介绍了几种具有生化和药理学意义的 P-咔啉衍生物的 H 酸度标度的 pKa 数据。特别是研究了芳香度的影响,以提供这种影响对酸度的信息。实验性对咔啉(Ia)、哈曼(Ib)、盐酸哈马林水合物(Ic)和盐酸哈马林二水合物(II)从EGA Chemie购买并按原样使用。这些化合物在t.1.c时是纯的。四氢哈明(111)由哈马林用硼氢化钠还原制得,并用甲醇重结晶纯化。这些化合物的储备溶液在甲醇中制备并储存在黑暗中以避免光氧化。如Yagil l6所述,氢氧化物溶液由Merck A.R.氢氧化钾制备,并用标准化硫酸溶液滴定来降低其浓度。电离常数采用分光光度法测定。* 通过将每种生物碱溶液(5&100 PI)的部分移液到氢氧化物溶液(5 cm3)中以足够量制备必要的溶液,以获得准确可测量的吸光度(最终的t fl-咔啉被系统地命名为吡啶并[3,4-b]吲哚;通篇使用微不足道的名称,浓度约为1 x ~PM)。充分混合后,将最终溶液保存在25.0 f0.1“C的恒温浴中。在一些形成浑浊溶液的情况下,在热水中加热是必要的,以实现完全溶解。使用Lambda-5分光光度计进行吸收光谱和吸光度测量,其细胞室也恒温在25.0和0.1“C.通常,使用与测试溶液浓度相同的氢氧化物溶液作为参考。正如预期的那样,P-咔啉的去质子化显着影响其电子吸收光谱,因为吲哚NH基团是共轭系统的一部分。表中的前两列显示了吸收最大值 A 的位置,,,,,.,中性物种及其共轭碱基。从稀氢氧化物溶液到浓氢氧化物溶液可以看出,在大约360-380 nm处,完全芳香族P-咔啉的酸型条带的强度降低,新的吸收带或肩部(harmine)出现,其中酸型不吸收。这些系统显示出良好的等吸虫点。部分还原的P-咔啉与该系列的其他成员表现不同。因此,在质子化时,330 nm处酸性形式的哈马林的强烈吸收带减少,但没有出现新的带。另一方面,四氢哈啶的最大吸收位置不受氢氧化物浓度变化的影响,尽管在转化为碱时在3&340 nm处吸光度显著增加。然而,应该注意的是,由于其更浓的氢氧化物溶液的浑浊度,无法获得后一种化合物的碱形式的光谱。所有其他化合物的电离比由公式(1)计算,其中dB和dBH分别是完全电离物质和非电离物质在所选波长下的吸光度,d是监测各种中间氢氧化物浓度的波长下的吸光度。在获得这些数据时,我们使用对应点来记录 k0.75 以内的 1 值,因为观察到与平行行为的明显偏差超出了这些限制。在Harman的情况下,检查了改变进行电离比测量的波长的影响。在其他情况下,I的计算仅在一个波长下进行,如表中所列。1574 J. CHEM. SOC.PERKIN TRANS. II 1986 表。25“C 化合物 BH, hmax,/nm B-7 hmax./nm h/nm a -d log I/d H-rc PK, 338, 348 380 380 1.00 k0.02 0.991(7) 14.49 & 0.07 334, 346 375 334, 0.93 k 0.16 0.992(6) 14.50 & 0.07 375 0.98 f0.03 0.986(7) 14.45 & 0.09 298 298, 362 (sh) 362 1.02 f0.06 0.997(9) 14.43 f 0.02 330 330 330 1.02 & 0.2 0.996(5) 15.34 & 0.03 270, 296 270, 296 276, 304 15.6 & 0.2 a 用于测量的波长。即对数 I 相对于 H- 的图的斜率。这些图的相关系数。括号中的数字是所占的点数。(I 1 a;R' = ~2 = H (11) R' =CH3, R2 =OCH3 (111) R' = CH3 , R2 =OCH3 b;R' =CH3 , R2= H C;R' = CH, , R~ =OCH, (la) 方案。P-咔啉的电离平衡 在研究 P-咔啉的电离行为时,考虑 Yagil16 建立的 H 酸度函数来描述浓氢氧化物溶液中吲哚的电离似乎是合适的。对数 1 与 H 给出的直线的图,其斜率和相关系数在表中报告。可以注意到,这些斜率的值非常接近统一,可以得出这些化合物的电离遵循 H 酸度函数的结论。因此,使用公式(2)计算pK值,并在表中报告数据。可以看出,哈曼的pK值与用于电离比测定的波长相当独立。另一方面,它与之前 14.6 的 reporkd 价值非常吻合。在四氢哈啶的情况下,由于上述溶解度问题而无法获得分光光度滴定曲线,因此我们采用了 Marioni 和 Calmon l9 的方法来估计其 pK 值。根据这种方法,只需要滴定曲线的一部分,pK值,可以通过使用公式(3)从d与(dBH-d)h-的曲线的斜率中找到,其中h-=反对数(-H-)。由于该方法的误差可能很重要,因此在两种不同的波长下进行吸光度测量,表中报告的四氢哈烷的pK是这些结果的平均值。检查pK,表中的数据表明,p-咔啉是比吲哚(pKa 16.97)更强的酸。因此,将吡啶环退火成吲哚得到对咔啉会导致酸度增加 2.5 pK 单位。与吲哚相比,对咔啉的酸强度更高,遵循五元杂环吡咯、咪唑和吡唑及其苯甲基吲哚、苯并咪唑和吲唑的趋势;由于阴离子的共振稳定,共轭的延伸提高了酸度。然而,与吡咯和吲哚之间观察到的 0.5 pKa 单位的增加相比,从吲哚到 0-咔啉的酸度增加似乎异常高。不幸的是,由于母体化合物6-氮杂吲哚的酸强度未知,因此无法讨论苯和吡啶退火的不同作用。通过假设苯环和吡啶环的废止效应是累加的,可以预测 6-氮杂吲哚的 pK 值约为 15。还应该注意的是,对吲哚啉的酸度随着对吲哚啉骨架的四氢<二氢<完全芳香族对吲哚酸阴离子的共振稳定所预期的顺序而增加。最后,我们可以简要地评论一下甲氧基和甲基取代在对咔啉环的 C-7 和 C-1 处的影响相当小,因为这些取代基不会使阴离子产生额外的共振形式。相反,当甲基取代在吡啶氮原子上时,酸度会异常高,如2-甲基-P-咔啉所示,其pK为10.9。''在这种情况下,很明显,带正电的季氮原子是稳定阴离子的另一个因素。J. CHEM. SOC. PERKIN TRANS. II 1986 致谢 我们衷心感谢西班牙科学与技术研究协会的财政支持。参考文献 1 R.A. Abramovitch 和 I. D. Spencer, Ado.杂环。化学, 1964, 3, 79.2 K. Stuart 和 R. Woo-Ming,杂循环,1975 年,3,223。3 R.H.F. Manske,“生物碱”,学术出版社,纽约,1965年,第八卷,第47-53页。4 V. Snieckus,《生物碱》,R.H. F. Manske编,学术出版社,纽约,1968年,第十一卷,第1-40页。5 D. H. Aarons, G. V. Rossi, and R. F. Orzechowski, J. Pharm. Sci., 1977,66, 1244.6 R. G. Rahwan,毒理学。应用药理学, 1975, 34, 3.7 B. T. Ho, W. M.McIsaac, K. E. Walker, and V. Estevez, J. Pharm. Sci., 1968, 57, 269, 1368.8 N. S. Buckholtz 和 W. 0.Boggan, LiJe Sci., 1977, 20, 2093.9 M. Canessa, E. Jaimovich, 和 M. de la Fuente, J. Memhr.Bio(., 1973, 13, 263. 10 R.Sakuros 和 K. P. Ghiggino, J. Photochem., 1982, 18, I. 11 0.S. Wolfbeis 和 E. Furlinger, Monatsh. 化学, 1982, 113, 509. 12 0.S. Wolfbeis 和 E. Furlinger, 2. Phys. Chem. Neue Folge, 1982, 129, 171. 13 K. T. Douglas, R. K. Sharma, J. F. Walmsley, 和 R.C. Hider, Mnl. Pharmacol., 1983, 23, 614.14 F. Tomas Vert, I. Zabala Sanchez, and A. Olba Torrent, J. Photochem., 1983, 23, 355.15 F. Tomas Vert, I. Zabala Sanchez, and A. Olba Torrent, J. Photachem., 1984, 26, 285.16 G. Yagil, J. Phys. Chem., 1967, 71, 1034.17 G. Yagil,四面体,1967,23,2855。18 A. Albert 和 E. P. Serjeant,“电离常数的测定”,Chapman and Hall,伦敦,1971 年,第 2 版。19 P. Maroni 和 J. P. Calmon, Bull.囊。噗噗。Fr.,1964年,第519页。收稿日期:1985年11月6日;论文 51 1950

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号