...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Tetra-acetylcaffeoylputrescine : an acetylndash;cinnamoyl diacylamine. Nuclear magnetic resonance studies of acetyl groups
【24h】

Tetra-acetylcaffeoylputrescine : an acetylndash;cinnamoyl diacylamine. Nuclear magnetic resonance studies of acetyl groups

机译:四乙酰咖啡酰腐胺:乙酰-肉桂酰二乙胺。乙酰基的核磁共振研究

获取原文
           

摘要

J.C.S. Perkin I1 Tetra-acetylcaffeoylputrescine: an Acetyl-Cinnamoyl Diacylamine. Nuclear Magnetic Resonance Studies of Acetyl Groups By Roger Davies t and Eddie 1. Mbadiwe, Agricultural Research Council's Food Research Institute, Colney Lane, Norwich NR4 7UA Comparison of the n.m.r. spectra of NN'-diacetylputrescine (6),NNN'N'-tetra-acetylputrescine (7). UO'-diacetyl-caffeic acid (5), and the title compound indicate the last to have structure (4). Preparation conditions and stabili- ties support this conclusion. IN 1894, Ivlerckl reported an alkaloid from pauco nuts (Pentaclethra macrophylla Benth.) which he named paucine. Hollerbach and Spiteller 2p3 showed by mass spectrometry that Merck's original preparations contained caff eoylputrescine. This has since been isolated from tobacco and ~ynthesised,~J~ and its presence demonstrated in fresh seeds of P.rnacr~phylla.~ by permethylation was ineffective, because three of the four acetyl groups were replaced by methyl grou~s.~ The study of acylation of amides, pioneered by Tither- ley,8 has not progressed far and there is not general agreement on reagents that promote specific substitu- tion~.~Thompson lo found that, under varying experi- mental conditions, he obtained either mono- or di-acyl- amides, or complete dehydration of the amide giving the nitrile. Using pyridine and different acid chlorides, he showed that the course of the reaction was affected by the presence of substituents on the acyl-chlorine bond, the structure of the amide, and the experimental condi- tions employed.Titherley prepared dibenzamide in quantitative yield by the benzoylation of benzamide in pyridine solution with benzoyl chloride. Inch and Fletcher,ll in their studies with glucosamine derivatives found benzoyl chloride in pyridine to be an effective reagent for producing N-benzoylation in acetamido-AC NHCHJ~NHA~ cyclohexyl derivatives and acetamidodeoxyglucopyran-AcO ,' (6) oses. The same authors found isopropenyl acetate-Acorco2Htoluene-p-sulphonic acid to be an effective N-acetylating (5) By acetylating caffeoylputrescine in acetic anhydride- pyridine we obtained a tetra-acetyl derivative agreeing with that described by Hollerbach and S~iteller.~.~ These authors also described an unstable penta-acetyl and a triacetyl derivative, which presumably have structures (1) and (2) respectively.However, the tetra-acetyl derivative could have structure (3) or (4). The present work was undertaken to settle this ques- tion, and has provided some additions to the scanty knowledge concerning the formation, physical properties, and stability of diacylamines. An attempt to locate the unsubst itut ed posit ion in the tetra-acet yl derivative t PreseNt addvess: Ministry of Agriculture, Fisheries and Food, Food Science Unit, Colney Lane, Norwich NR4 7UA. E. Merck, Mercks Jber. Neuev. Geb. Pharmakother. 1894, 11. A. Hollerbach and G. Spiteller, Monatsh., 1970, 101, 141. A. Hollerbach, Diplomarbeit, University of GCittingen.1969. J.G. Buta and R. R. Izac, Phytochemistry, 1972,ll. 1188. ti S. Mizusaki, Y. Tanabe, M. Noguchi, and E. Tarnaki, Phyto-chemistry, 1971, 10, 1347. reagent for both acetamides and benzamidcs. McCluer and Evans,12 working on cerebrosides, showed that ben- zoyl chloride produced amide acylation which benzoic anhydride tended to avoid. Our approach to the study of the structure of tetra- acetylcaff eoylputrescine has involved a comparison of its n.m.r. spectrum with those of the model compounds 00'-diacetylcaffeic acid (5), NN'-diacetylputrescine (6), and NNN'W-tetra-acetylputrescine (7). The position of absorption of the two acetyl methyl groups in the n.m.r. spectrum of (5)should enable identification of the absorption signals due to the two corresponding groups in the n.m.r.spectrum of tetra-acetylcaffeoylputrescine. If tetra-acetylcaffeoylputrescine has structure (4), the absorption position of the NHAc methyl group should be comparable with that of the N-acetyl methyl groups in (6); if it has structure (3),the absorption positions of the two acetyl methyl groups in the NAc, fragment should E. I. Mbadiwe, Phytochemistry, 1973, 12,2646. J. Eagles, W. M. Laird, R. Self, and R. L. M. Synge, Bio-medical Mass Spectvometry, 1974, 1, 43. A. W.Titherley, J. Chem. Soc., 1904, 85, 1673.* J. Zabicky, ' The Chemistry of Amides, Interscience, London, 1970. lo Q. E. Thompson, J. Amer. Chem. Soc., 1951, 73,6841. 11 T. D. Inch and H. G. Fletcher, jun., J. Ovg.Chem., 1966, 31, 1816. l2 R. H.McCluer and J. E. Evans, J. Lipid Res., 1973, 14, 611. be comparable with those of the N-acetyl methyl groups in (7). RESULTS AND DISCUSSION The data from the n.m.r. spectra of (5)-(7) and tetra- acetylcaffeoylputrescine are given in the Table. We N.m.r. spectra of compounds (4)-(7) (90 MHz; 2HBDMS0solution ; Me,Si internal standard) 7 (4) 2.4G2.75 7.70 8.20 8.63 3.38 6.65-7.05 (m, (Sl (S, (m1 (d? (m) 4w 6 H)3 H)4 H) 1 H, J 16 Hz)* (6) 2.28-2.72 7.70 3.45 (m, (s* (4 4 H) 6 H) 1 H, J 16 Hz) (6) 6.96 8.22 8.61 (t* (s,(quintet, 4 H)6 H)4 H) (7) 6.37 7.65 8.50 (t,(s(quintet, 4 13)12 H)4 H) * Signal partially obscured by that due to solvent; integration unreliable. assign the singlet at 7 7.70 (6H) in the spectrum of tetra- acetylcaffeoylputrescine, to the two O-acetyl groups, by comparison with the spectrum of (5).Weinges and Piretti l3 also found, for (5) in CDCl,, that these two groups absorb coincidentally at 7 7.70. The spectrum of tetra-acetylcaffeoylputrescine also shows a singlet at 7 8.20 (3 H) due to an N-acetyl methyl group. The similarity between this absorption and that due to the N-acetyl methyl groups in (6) suggests that the amino- group is monoacetylated. We are unable to observe in the spectrum recorded in 2HJDMS0 the absorption due to the remaining N- acetyl methyl group. That this group is present is clearly demonstrated by the mass spectrum of the com- pound., We conclude that this acetyl group exists in several different conformations, giving rise to several small peaks or even a broad absorption, instead of a sharp singlet.A molecular model of structure (4) shows this to be a reasonable explanation. A similar effect has been observed with the N-acetyl methyl signal in the n.m.r. spectrum of the N(2)-methyl derivative of the alkaloid ~haen0rhine.l~ The absorption signals due to this remaining N-acetyl methyl group are obscured by the absorptions due to the a-methylene protons of the putrescine residue, and to the residual hydrogen in the solvent, thus preventing their detection by integration. Attempts to overcome la K. Weinges and M. V. Piretti, Ann. Chim., 1972, 62, 29. l4 H. 0. Bernhard, I. Kompis, S. Johne, D.Groger, M. Hesse, and H. Schmid, Helv. Chim. Ada, 1973, S6, 1266. l6 A. Stoessl, R. Rohringer, and D. J. Samborski, Tetrahedvon Letters, 1969, 2807. l6 C. Di Bello. V. Giormani. and F. D'Anaeli. Gazzetta. 1967. v,07, 787. 17 E. I. Mbadiwe, P1i.D. Thesis, University of East Anglia, 1975. this by recording the spectrum in non-interfering solvents (CDCl,, 2H5pyridine, and D,O) were unsuccessful due to solubility problems. Consideration of the results of the n.m.r. studies leads to the conclusion that (4) is the correct structure for tetra-acetylcaffeoylputrescine. The published spectrum of compound (8) l5appears to support this conclusion. Thus when the unstable pent a-acet ylcaff eoylputrescine obtained by Hollerbach and Spiteller 2v3 decomposes to the tetra-acetyl derivative, the acetyl group lost is from the NN-diacetyl group rather than from the N-cinna- moyl-N-acetyl group.The stability of diacylamines has been the subject of little study. It is recognised that, when two acyl groups are attached directly to one central atom, they render each other mutually more sus- ceptible to attack by nucleophilic reagents. However, in such reactions involving mixed diacylamines, a mixture of products often results,11 and there appears at present to be no explanation why one type of acyl group should be lost in preference to another. The fact that, under the conditions we employed in the acetylation of caffeoylputrescine, putrescine itself gives the diacetyl derivative, and is converted into the tetra- acetyl only under forcing conditions, led us a priori to expect tetra-acetylcaffeoylputrescine to have structure (4) rather than (3).Our conclusion is further supported by Hollerbach's observation that tetra-acetylputrescine is converted to diacetylputrescine by recrystallization from aqueous alcohol, whereas tetra-acetylcaffeoyl-putrescine is stable to this treatment. EXPERIMENTAL Preparation of Tetra-acetylcaffeoylputrescineusing I'yri-dine-Acetic A nhydride.-To caffeoylputrescine hydrochloride (15 mg), a cooled (5") 1 : 1 (v/v) mixture of acetic anhydride- pyridine (7 ml) was added with vigorous shaking until all the hydrochloride dissolved. The reaction flask was left at room temperature overnight, when a wine-red solution resulted.Ice-cold water (7 ml) was added with cooling and the flask was left at room temperature for 1 h to decompose the excess of acetic anhydride. It was then repeatedly evaporated with water additions (40" in vacuo) until pyridine was absent. The aqueous product (10 ml) was extracted with portions (4 x 10 ml) of chloroform. The evaporated residue from the pooled chloroform extracts was dried (H,S04-NaOH) in a vacuum and crystallized from aqueous ethanol, m.p. 188-192" (uncorr.), yield 80. The low- resolution mass spectrum agreed with that published by H~llerbach.~ Tetra-acetylputresciute (7).-This was prepared according to ref. 16 (cf. ref. 3), 1n.p. 110-111" (1it.,l6 114"). Diacetylputrescine (6).-This was made by acetylation of putrescine with acetic anhydride and ~yridine,~~ m.p.17-21 138" (lit.,3 136").l8 H. J. Veith, A. Guggisberg, and 31.Hesse, Helv. Chim. Acta, 1971, 54, 663. 1Q T. Hags and R. Majima, Bey. deutsch. chem. Gesellschaft, 1903, 36, 338. 20 0. V. Schickh. Ger. P. 1.136,450/1962 (Chem. Ah.. 1963.~. 68, 23746). 21 J. StehliCek, J. Labskf, and J. Sebenda, Coll. Czech. Chem. Comm., 1967. 32, 546. J.C.S. Perkin I1 DiacelylcaffeeicAcid (6).-This was prepared by the method Eagles for the mass spectra, and the Federal Nigerian of Tiemann and Nagai,e m.p. 197-198" (lit.,22 190-191"). Government for a Research Scholarship to E. I. M. We thank Professor R. L. M. Synge for valuable discus- 611463 Received, 23rd July, 19761 sion, Professor G. Spiteller for making available A. Holler-22 F. T'emann and N. Na@, B~~. bach's thesis,s Mrs. B. Howard for the n.m.r. spectra, Mr. J. 1878.11. 666. deutsch. che,n. ~~~~ll~~h~jt,
机译:J.C.S. Perkin I1 四乙酰咖啡酰腐胺:乙酰肉桂酰二乙胺。乙酰基团的核磁共振研究 作者:Roger Davies t 和 Eddie 1。Mbadiwe,农业研究委员会食品研究所,Colney Lane,Norwich NR4 7UA NN'-二乙酰基腐胺 (6),NNN'N'-四乙酰基腐胺的 n.m.r. 光谱比较 (7)。UO'-二乙酰基-咖啡酸 (5),标题化合物表示最后具有结构 (4)。制备条件和稳定性支持这一结论。1894 年,Ivlerckl 报道了一种来自 pauco 坚果的生物碱 (Pentaclethra macrophylla Benth.),他将其命名为 paucine。Hollerbach 和 Spiteller 2p3 通过质谱法表明,默克公司的原始制剂含有 caff eoylputrescine。此后,从烟草中分离出这种物质,~J~,在P.rnacr~phylla.~的新鲜种子中,通过过甲基化证明了它的存在是无效的,因为四个乙酰基团中的三个被甲基Grou~s.~由Tither-ley开创的酰胺酰化研究8没有取得多大进展,并且对促进特异性取代的试剂没有普遍的共识~.~Thompson lo发现, 在不同的经验条件下,他获得了单酰基或二酰基酰胺,或得到腈的酰胺完全脱水。使用吡啶和不同的酰氯,他表明反应过程受到酰基-氯键上取代基的存在、酰胺的结构和所采用的实验条件的影响。Titherley通过苯甲酰胺在吡啶溶液中与苯甲酰氯的苯甲酰化反应,定量制备了二苯甲酰胺。Inch 和 Fletcher 在对氨基葡萄糖衍生物的研究中发现吡啶中的苯甲酰氯是乙酰氨基-AC NH[CHJ~NHA~环己基衍生物和乙酰氨基脱氧吡喃葡萄糖-AcO,' (6) oses 中产生 N-苯甲酰化的有效试剂。同一位作者发现乙酸异丙烯酯-Acorco2Htoluene-p-磺酸是一种有效的N-乙酰化 (5) 通过乙酸酐-吡啶中的咖啡酰腐胺乙酰化,我们得到了与 Hollerbach 和 S~iteller 描述一致的四乙酰衍生物.~.~ 这些作者还描述了不稳定的五乙酰基和三乙酰基衍生物,它们可能分别具有 (1) 和 (2) 的结构。然而,四乙酰基衍生物可以具有结构(3)或(4)。目前的工作就是为了解决这一问题,并补充了关于二环胺的形成、物理性质和稳定性的稀缺知识。试图在四乙酰基衍生物中定位未证实的假设 t PreseNt addvess: Ministry of Agriculture, Fisheries and Food, Food Science Unit, Colney Lane, Norwich NR4 7UA.E.默克,默克Jber。诺伊耶夫。盖布。药剂师。1894, 11.A. Hollerbach 和 G. Spiteller,Monatsh.,1970 年,101 年,141 年。A. Hollerbach,Diplomarbeit,GCittingen大学,1969年。J.G. Buta 和 R. R. Izac,植物化学,1972,ll. 1188。ti S. Mizusaki, Y. Tanabe, M. Noguchi, and E. Tarnaki, 植物化学, 1971, 10, 1347.乙酰胺和苯甲酰胺试剂。McCluer 和 Evans,12 研究脑苷脂,表明苯甲酰氯产生酰胺酰化,苯甲酸酐倾向于避免。我们研究四乙酰基腐胺结构的方法涉及将其 n.m.r. 光谱与模型化合物 00'-二乙酰基咖啡酸 (5)、NN'-二乙酰基腐胺 (6) 和 NNN'W-四乙酰腐胺 (7) 的光谱进行比较。两个乙酰甲基在(5)的n.m.r.谱图中的吸收位置应该能够识别由于四乙酰咖啡酰腐胺的n.m.r.谱图中两个相应基团而产生的吸收信号。如果四乙酰咖啡酰腐胺具有(4)结构,则NHAc甲基的吸收位置应与(6)中N-乙酰甲基的吸收位置相当;如果具有(3)结构,则两个乙酰甲基在NAc中的吸收位置,片段应为E.I.Mbadiwe,Phytochemistry,1973,12,2646。J. Eagles、W. M. Laird、R. Self 和 R. L. M. Synge,生物医学质谱法,1974,1,43。A. W.Titherley, J. Chem. Soc., 1904, 85, 1673.* J.Zabicky,“酰胺的化学”,Interscience,伦敦,1970年。lo Q. E. Thompson, J. Amer. Chem. Soc., 1951, 73,6841.11 T. D. Inch 和 H. G. Fletcher, jun., J. Ovg.Chem., 1966, 31, 1816.l2 R. H.McCluer 和 J. E. Evans, J. Lipid Res., 1973, 14, 611.与(7)中N-乙酰甲基的可比性。结果与讨论 表中给出了(5)-(7)和四乙酰咖啡酰腐胺的N.M.R.谱图数据。化合物 (4)-(7) 的 N.m.r. 光谱 (90 MHz;[2HB]DMS0解决方案 ;Me,Si内标) 7 (4) 2.4G2.75 7.70 8.20 8.63 3.38 6.65-7.05 (m, (Sl (S, (m1 (d?(m) 4w 6 H)3 H)4 H) 1 H, J 16 Hz)* (6) 2.28-2.72 7.70 3.45 (m, (s* (4 4 H) 6 H) 1 H, J 16 Hz) (6) 6.96 8.22 8.61 (t* (s,(quintet, 4 H)6 H)4 H) (7) 6.37 7.65 8.50 (t,(s(quintet, 4 13)12 H)4 H) * 由于溶剂而部分被信号遮挡;集成不可靠。通过与(5)的光谱进行比较,将四乙酰基咖啡酰腐胺光谱中7 7.70(6H)处的单线态分配给两个O-乙酰基团。Weinges 和 Piretti l3 还发现,对于 CDCl 中的 (5),这两个组在 7 7.70 时巧合地吸收。由于 N-乙酰甲基,四乙酰咖啡酰腐胺的光谱也显示 7 8.20 (3 H) 处的单线态。这种吸收与(6)中N-乙酰甲基的吸收之间的相似性表明氨基是单乙酰化的。我们无法在[2HJDMS0中记录的光谱中观察到由于剩余的N-乙酰甲基的吸收。我们得出结论,该乙酰基团以几种不同的构象存在,产生几个小峰甚至广泛吸收,而不是尖锐的单线态。结构的分子模型(4)表明这是一个合理的解释。在生物碱~haen0rhine.l~的N(2)-甲基衍生物的n.m.r.谱图中观察到N-乙酰甲基信号也有类似的效果,由于剩余的N-乙酰甲基的吸收信号被腐胺残基的a-亚甲基质子和溶剂中残留的氢的吸收所掩盖, 从而防止通过集成来检测它们。试图克服 la K. Weinges 和 M. V. Piretti,Ann. Chim.,1972 年,62 年,29 年。l4 H. 0.伯恩哈德、I. Kompis、S. Johne、D.Groger、M. Hesse 和 H. Schmid、Helv。噗噗。艾达,1973 年,S6,1266。l6 A. Stoessl、R. Rohringer 和 D. J. Samborski,Tetrahedvon Letters,1969 年,2807 年。l6 C.迪贝洛。V.乔尔马尼。和 F. D'Anaeli。加泽塔。1967. v,07, 787.17 E.I.姆巴迪韦,P1i.D.论文,东英吉利大学,1975年。由于溶解度问题,通过记录非干扰溶剂(CDCl,,[2H5]吡啶和D,O)中的光谱而未能成功。审议国家核会议的结果研究得出的结论是,(4)是四乙酰咖啡酰腐胺的正确结构。已发表的化合物(8)l5谱图似乎支持这一结论。因此,当Hollerbach和Spiteller 2v3获得的不稳定的五α-乙酰基基腐胺分解为四乙酰衍生物时,失去的乙酰基来自NN-二乙酰基,而不是来自N-肉桂-甲基-N-乙酰基。二胺的稳定性一直是鲜为人知的研究对象。人们认识到,当两个酰基直接连接到一个中心原子上时,它们会使彼此更容易受到亲核试剂的攻击。然而,在涉及混合二酰胺的这种反应中,往往会产生产物的混合物,11 目前似乎无法解释为什么一种酰基会优先于另一种酰基。事实上,在我们用于咖啡酰腐胺乙酰化的条件下,腐胺本身会产生二乙酰衍生物,并且仅在强迫条件下转化为四乙酰基,这一事实使我们先验地期望四乙酰咖啡酰腐胺具有结构 (4) 而不是 (3)。Hollerbach 的观察进一步支持了我们的结论,即四乙酰基腐胺通过从水性醇中重结晶转化为二乙酰腐胺,而四乙酰咖啡酰腐胺对这种处理是稳定的。实验 制备四乙酰咖啡酰腐胺使用I'yri-dine-Acetic A nhydride.-to caffeoylputrescine hydrochloride (15 mg),在冷却的(5“)1 : 1 (v/v)乙酸酐 - 吡啶(7ml)混合物中加入,剧烈摇动直至所有盐酸盐溶解。将反应瓶在室温下放置过夜,此时得到酒红色溶液。冷却加入冰冷水(7ml),将烧瓶在室温下放置1小时,以分解过量的乙酸酐。然后用加水(真空中 40 英寸)反复蒸发,直到没有吡啶。用部分(4×10ml)氯仿提取水产物(10ml)。将合并的氯仿提取物蒸发的残留物(H,S04-NaOH)在真空中干燥,并由乙醇水溶液结晶,熔点188-192“(未核对),收率为80%。低分辨率质谱与H~llerbach发表的一致.~ Tetra-acetylputresciute (7).-这是根据参考文献16(参见参考文献3),1n.p.110-111“(1it.,l6 114”)制备的。二乙酰腐胺 (6).-这是由腐胺与乙酸酐和 ~yridine 乙酰化而成的,~~ m.p.17-21 138“ (lit.,3 136”).l8 H. J. Veith, A. Guggisberg, and 31.Hesse, Helv.噗噗。学报, 1971, 54, 663.1Q T. Hags 和 R. Majima,Bey。德语。化学。Gesellschaft,1903 年,36 年,338 年。20 0.V.希克。Ger. P. 1.136,450/1962 (Chem. Ah..1963.~.68, 23746).21 J. StehliCek, J. Labskf, and J. Sebenda, Coll. 捷克语。化学通讯, 1967.32, 546.J.C.S. Perkin I1 DiacelylcaffeeicAcid (6).-这是通过Eagles方法制备的质谱图,以及Tiemann和Nagai的联邦尼日利亚人,%e m.p. 197-198“(lit.,22 190-191”)。政府向 E. I. M. 提供研究奖学金我们感谢 R. L. M. Synge 教授的宝贵讨论 611463 19761 年 7 月 23 日收到,G. Spiteller 教授提供 A. Holler-22 F. T'emann 和 N. Na@, B~~。巴赫的论文,B.霍华德夫人关于n.m.r.光谱,J.先生1878.11。666.德意志。che,n. ~~~~ll~~h~jt,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号