...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Electrophilic aromatic reactivitiesviapyrolysis of esters. Part 18. Pyrolysis of 1-aryl-1-methylethyl acetates: the high polarisability of themeta-methyl substituent
【24h】

Electrophilic aromatic reactivitiesviapyrolysis of esters. Part 18. Pyrolysis of 1-aryl-1-methylethyl acetates: the high polarisability of themeta-methyl substituent

机译:亲电芳香族反应性通过酯类的热解。第 18 部分。1-芳基-1-甲基乙基乙酸酯的热解:间甲基取代基的高极化性

获取原文
           

摘要

J.C.S. Perkin I1 Electrophilic Aromatic Reactivities via Pyrolysis of Esters. Part 18.l Pyrolysisof I-Aryl-I -methylethyl Acetates : the High Polarisability of the meta-Met hy I Su bst ituent By Hassan B. Amin and Roger Taylor," School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex Rates of pyrolysis of a range of 1 -aryl-I -methylethyl acetates, measured between 590.8 and 529.6 K, give a very good correlation with cr+ values. The p factor (-0.743 at 550 K) is almost exactly the same as in pyrolysis of the much less reactive 1 -arylethyl acetates and this contrasts with SN1 solvolyses of the corresponding chlorides where increased electron supply by the methyl groups to the side-chain a-carbocation produces less demand for stabilis- ation of the transition state by the aryl substituents and a smaller p factor.In the elimination the cation is only partially formed and the electron supply from the extra methyl groups of the tertiary esters facilitates C-0 bond breakage and a more polar transition state ; the opposing effects of the methyl substituents therefore produce no nett change in p factor. The transition-state charge difference is confirmed by the (statistica{{y corrected) tertiary : secondary reactivity ratio of 77 which is much greater, relative to the p factor, than the difference between the rates of SN1 solvolysis of the corresponding tertiary and secondary chlorides. The mefa methyl substituent is confirmed as being of exceptional polarisability in the absence of solvent; in both the present reaction and phenyl carbonate pyrolysis a of value of -0.1 3 is required to correlate its effect.The reactivity of 1 -(2-pyridyl)-l -methylethyl acetate is less than predicted from the corresponding data for 1-aryl-ethyl acetates and 1-arylethyl methyl carbonates, and reasons for this are considered. This anomaly apart, data from all three ester types confirm that thecr+ values for the pyridine free base are (positions in parentheses) : 0.77(2), 0.295(3). and 0.86(4) and that the larger values obtained in most solution reactions refer to the hydrogen-bonded species. THE pyrolysis of l-arylethyl acetate is well established as a model reaction for determining the quantitative electrophilic reactivity of aromatic molecules.In order to extend the general technique to measuring the re- activities of very unreactive heterocycles it may be necessary to use other types of esters because the secondary decomposition of acetic acid in the time taken for the primary elimination becomes significant enough to interfere with the kinetics. One alternative could be to use 1-arylethyl methyl (or phenyl) carbonates, i.e. to increase the ease of C-0 bond breaking by increasing the electronegativity of the group attached to the acyl carbon. This also causes the secondary decomposition to become instantaneous leading to an overall stoicheio- metry of 3.0 and no kinetic complication. Another method, which we have investigated in this paper is to use tertiary esters in which the elimination rate is increased not only by increased electron supply to the a-carbon by the extra methyl group, but also because there are a greater number of p-hydrogen atoms.Moreover, measurement of the elimination rates of the tertiary esters should provide an additional test of our proposal that (contrary to an earlier belief the charge developed in the transition state for ester pyro- lysis is not constant but varies according to the electron supply to the a-carbon. RESULTS AND DISCUSSION The kinetic data are given in Table 1which show that compared to pyrolysis of the corresponding l-arylethyl acetates, the log (A/s-l) values are slightly larger (ca. 0.5 units). This is to be expected since less reorganisation of structure is necessary before the acetoxy-group can become amp;-coplanar to a p-hydrogen.The activation energies are however considerably less (ca. 5 kcal mol-l) than for l-arylethyl acetates since the l-aryl-l-methyl- ethyl acetates are much more reactive, and it is a general feature of these pyrolyses that higher reactivity is correlated with a lower activation The data give a good Hammett correlation against b+ Hammett plot for pyrolysis of l-aryl-l-methylethyl acetates at 550 K cr+ values (Figure 1) and p is -0.743 at 550 K (=-0.68 at 600 K) which is only slightly greater than for pyro- lysis of 1-arylethyl acetates (-0.66 at 600 K). These values are shown in Scheme 1 together with those for SN1solvolysis of the corresponding chlorides at 25 0C.9910 It is apparent that in solvolysis, going from a secondary to a tertiary compound causes a decrease in the p factor because the a-carbocation receives additional stabilis- ation by the extra methyl group, and SQ requires less 1979 229 TABLE1 Pyrolysis of compounds ArCMe,OAc E Ar 4-MeC,H4 TiK 583.7 103i4s-1 73.9 log (Ap) 12.87 kcal mol-1 37.4 Corr.coeff. 0.999 75 log k/k, 0.234 575.2 42.7 559.4 17.0 542.7 6.30 529.6 2.64 3-MeC6H, 583.7 575.2 54.2 33.0 13.03 38.2 0.999 98 0.098 559.4 13.1 542.7 4.46 529.6 1.88 H 583.7 43.6 13.00 38.4 0.999 95 0 575.2 26.4 559.4 10.6 542.7 3.57 529.6 1.48 4-C1C6H4 583.7 37.8 13.08 38.7 0.999 95 -0.077 575.2 22.2 559.4 8.72 542.7 2.97 529.6 1.23 3-ClC,H 4 583.7 575.2 23.35 14.3 13.22 39.7 0.999 96 -0.295 559.4 5.48 542.7 1.76 529.6 0.719 3-Pyrid yl 590.8 583.7 42.4 28.2 13.23 29.5 0.999 99 -0.213 575.1 17.1 559.7 6.57 542.8 2.17 4-Pyridyl 590.8 583.7 17.6 11.9 13.56 41.4 0.999 94 -0.642 575.1 6.77 559.7 2.53 542.8 0.789 2-Pyrid yl 590.8 583.7 16.9 11.7 13.65 41.6 0.999 79 -0.660 575.1 6.75 559.7 2.39 542.8 0.759 a At 550 K.stabilisation by the adjacent aryl group. Numerous state charge structure in ester pyrolysis. Unlike the examples of this effect (termed the ' tool of increasing solvolysis, the transition state charge is not the same for the secondary and tertiary esters, but is greater in the H CH3 latter due to the extra electron release by the additional I I methyl group. This methyl group stabilizes the extra Ar-C-I CH, Ar -C-CH3 charge which it creates with the nett result that the I OAc OAc amount of charge to be stabilized by the aryl group remains approximately the same as does the p factor. The difference in polarities of the transition states for (1) (11) pyrolysis of secondary and tertiary esters is also evident -0.66 -0.68 from comparing their differences in reactivities with those for the corresponding SN~solvolyses of chlorides.H y3 The statistically corrected values for elimination areI Ar-C-CH3 A r -C-CH, given along with those for solvolysis in Scheme 2. The consistency of the tertiary :secondary rate ratios in the I I Ct CL elimination stems from the general relatively in-sensitivity of these ratios to the type of ester,2 and from ( 11.11 (IY) the similar reactivity of the phenyl-and methyl--6.00 -4.54 containing esters so that the transition state charge will be similar.Two features follow from these data.SCHEME1 p Factors for elimination of acetates (at 600 K) solvolysis of chlorides (at 298 K) (i) In each case the phenyl group activates more than and for SN~ the methyl group it replaces. However in the solvo- electron demand ') have recently been collated by H. C. lysis, this activation is 4580 x for the secondary Brown.11 This does not happen in the elimination and chlorides and 227 x for the tertiary chlorides, the the reason confirms our earlier analysis of the transition- lower value being obtained with the latter because there is less nett positive charge to be stabilized (as indicated by the differences in the p factors).For the esters however a constant value of ca. 3.78 is obtained in both the secondary and tertiary series because the nett positive charge is the same in both series (as also indicated by p factors).(ii) The differences in reactivity of the secondary and corresponding methylated tertiary chlorides in the solvolysis are 55 000 and 2 730. The approximate value F that should apply in the pyrolysis can be calculated from the ratios of the average p factors and average of these reactivity differences thus: F = anti-log log 29 000 x (0.67/5.3)= 3.7.The value observed in the elimination (77.4) is very much greater than this H H I I Me-C-Me Ph-C-Me I I OAc OAc 1 3.77 H HI I Me-C-Me Ph-C-Me I I CI c1 (V) 1 4580 J.C.S. Perkin I1 deviation rules out experimental error or one arising from surface-catalysed elimination. Moreover, these esters were not derived from a common precursor, so impurity in that is not responsible. Nor is rearrange- ment prior to or during the pyrolysis because this would be most effective at the highest temperatures whereas the deviations are most significant with the eliminations studied at lowest temperatures. (Such rearrangement would lead also to poor first-order kinetics, in contrast to the experimental observations.) Since the value of o+ (m-Me) tends to increase with increasing charge in the transition state we are led to the conclusion that the rn-methyl substituent is able to exhibit exceptional polarisability in the gas-phase by a mechanism not Me Me I I Me-C-Me Ph-C-Me I I OAc OAc 77.3 293 (77.5) Me Me I I Me-C-Me Ph-C-Me I I CL Ct (YI) 55000'* 125 x 107 (1) (2730)* Statistically corrected to allow for the number of @-hydrogens SCHEME Relative reactivities in pyrolytic elimination of acetates and SN~2 solvolysis of chlorides * This can be calculated in two ways: RVI (25") = 12.4 x s-l in 90 aqueous acetone,13 and kv (25') is estimated in the litera- ture as 5.86 x lo-' SPin 80 aqueous acetone.I4 The difference in the two media is reported to give a reactivity difference of 12.9 at 25 T,15 so the (VI) : (V) reactivity difference is (12.4 x 12.9)/0.0586 = 2 730.The value of kv (25') can also be calculated from the rate of solvolysis of (V) in 80 aqueous ethanol at 25 "C (1.04 x lOW5s-l)9 and the reactivity difference of 17 between 80 aque-ous ethanol and 80 aqueous acetone.ls The rate coefficient for (V) is then (1.04 x 10-j) s-'/ 17 = 6.12 x lo-' s-l in good agree-ment with the above value. These data show that the reactivity of (VI) relative to that of isopropyl chloride (2.6 x loB)given in ref. 11, p. 198, is wrongly calculated. because the transition state is more polar for the tertiary esters than for the secondary esters.The Efect of the m-Methyl Substituent.-It is apparent from the Figure that the m-methyl substituent activates more than predicted by its G+ value (even using the value of -0.098, redefined from the pyrolysis of l-aryl- ethyl acetates). This behaviour is not just confined to the present results and the values of o+ required to TABLE2 Values of Q+ (m-Me) required in ester pyrolysis Reaction p at 600 K m+ Ref. l-Arylethyl acetates -0.06 -0.098 17 l-Arylethyl benzoates -0.72 -0.115 8 l-Arylethyl phenyl -0.84 -0.130 7 carbonates l-Aryl- l-methylethyl -0.68 -0.130 This acetates work correlate this substituent effect in four gas-phase eliminations are given in Table 2. The persistence of the available to the 9-methyl substituent.At present we have no idea what this mechanism can be. Since it is now known that the inductive and hyperconjugative effects of alkyl groups in the same direction1' it is reasonable to suppose that for alkyl groups in general op+ -om+ = constant. For t-butyl op+ = -0.365, and om+ = -0.19, so this difference = -0.175. Applyingthis to methyl we obtain ova+(predicted) = -0.311 -(-0.175) = -0.136, so the exalted value obtained in some of the eliminations appears not unreasonable. The present work shows even more emphatically, the extent to which the electronic effect of m-alkyl groups in solution reactions is masked by steric hindrance to solvation.18 The Efect of the 2-Pyridyl Group.-From the pyrolysis of l-arylethyl acetates B+ values were determined for each position of pyridine as shown in Table 3.19 These values gave excellent and quantitative correlation with theoretical predictions.The values derived from the 1979 pyrolysis of l-aryl-l-methylethyl acetates are also given in Table 3 from which it is seen that the constants for TABLE3 o+-Values for pyridine, determined from gas-phase pyro- lysis of ester Position 2 3 4 Esters 0.78 0.295 0.87 l-Arylethyl acetates 0.89 0.285 0.86 l-Aryl-l-methylethyl acetates 0.76 0.30 0.85 l-Arylethyl methyl carbonates the 3-and 4-positions are confirmed precisely, whereas the constant for the 2-position appears anomalously large, In order to ascertain the reason for this, we have pyrolysed the corresponding l-arylethyl methyl carbon- ates, for which p may be calculated as -0.71 at 600 K from the data given in ref.20. The kinetic data are given in Table 4 and yield a+-values (Table 3) which TABLE4 Pyrolysis of l-arylethyl methyl carbonates, ArCHCH30C00Me 107klS-1 T/K Ar = 2-Py 3-Py 4-Py Ph 665.4 62.4 128 52.8 650.4 30.5 61.6 25.8 45.0 634.5 13.55 28.9 11.7 15.2 613.8 4.44 9.44 3.80 6.51 599.3 4.11 2.23 579.9 Correlation 0.999 99 0.999 94 0.999 97 0.999 76 coefficient log (A/s-yE/kcal mol-' log k/k, (at 12.46 41.61 -0.5405 12.61 41.11 -0.212 12.31 41.36 -0.604 12.56 40.395 0 600 K) agree precisely with those obtained for l-arylethyl acetates, and further indicate that the value for the 2-position of pyridine in pyrolysis of l-aryl-l-methyl-ethyl acetates is anomalous and possible explanations are as follows.(i) The deactivation of the 2-position may derive substantially from a direct field effect which could be more important because of the greater charge which develops at the side chain a-carbon in pyrolysis of l-aryl- l-methylet hyl acetates. Against this argument must be set: (a) the fact that the p factor shows that the nett charge for delocalisation by the aromatic ring in the propyl esters is the same as for the ethyl esters and (b)the nett charge at the side-chain a-carbon for the carbonate pyrolysis is greater than for the acetates, yet the 2-pyridyl substituent behaves normally in carbonate pyrolysis.(ii) The lone pair on the nitrogen sterically prevents the methyl groups lying in the plane of the aromatic ring as is required for maximum overlap of the incipient p-orbital at the a-carbon with those of the ring. How-ever it seems improbable that the lone pair will be any bulkier than an ortho-C-H bond. Thus we cannot properly account for the anomaly at this time, and conclude that the use of l-aryl-l-methyl- ethyl acetates as a means of evaluating reactivities of very unreactive heterocycles is less satisfactory than the use of carbonates. Comparison of the gas-phase a+ values (and which describe the reactivity of the free base) with those which have been obtained in solution 21 (positions in paren- theses) : 0.74(2), 0.55(3),and 1.15(4) show that whereas the value for the 2-position agrees well, the solution values for the 3-and 4-positions are approximately 0.25 Q units too positive.This we believe is because the latter values refer to the hydrogen-bonded species and not the free base. However, when the probe group (CHMeC1) is attached to the 2-position, hydrogen bonding is likely to be sterically hindered, so that the value determined in solution (0.74) agrees well with the gas-phase value. Indeed it is significant that the average values of a (which are unlikely to be very different from a+) that have recently been obtained in polar media22 are: 0.76(2), 0.57(3), and 1.04(4) and again the value for the 2-position agrees well with the gas-phase value, but the others are more positive.On the other hand, the B values obtained in non-polar solvents agree more closely for each position with the gas-phase valuesz2 The notion 22 that the Q values are independent of solvent would seem to be difficult to sustain in the light of these results. EXPERIMENTAL l-Phenyl-l-methylethyl Acetate.-Acetophenone was con- verted via reaction with methylmagnesium bromide into l-phenyl- l-methylethanol which was acetylated with pyridine and acetic anhydride, and worked up in the usual way. Fractional distillation gave l-phenyl- l-meihylethyl acetate (38 based on ketone), b.p. 52-54 "C at 0.8 mmHg, nD201.498 2 (Found: C, 74.4; H, 7.75. C,1H,402requires C, 74.1; H, 7.92), ~(Ccl,) 2.81 (5 H, m, ArH), 8.14 (s, COCH,), and 8.32 s, C(CH,),.1-(4-Methylphenyl)-l-methylethyl A cetate .-4-Methylaceto- phenone was converted as above into crude 1-(4-methyl- pheny1)- l-methylethyl acetate (48 based on ketone). This compound is thermally very unstable and could not be fractionally distilled without very extensive decomposition. However, reasonable purification was achieved by very slow distillation at 60 "C and 0.5 mmHg pressure using a Buchi rotary still. This gave a colourless product which n.m.r. showed to contain a small amount of a,4-dimethyl-styrene; T(CC1,) 2.92 (4 H, m, ArH), 7.75 (s, ArCH,), 8.12 (s, COCH,), and 8.33 s,C(CH,),. This, however, does not interfere with the kinetic studies since it is the pyrolysis product. An attempt to make the corresponding 4-methoxy-compound by this method was unsuccessful. 1-(3-Methylpheny2)- l-methylethyl A cetate.-The reaction between acetone and m-tolylmagnesium bromide gave crude 1-(3-methylphenyl)-l-methylethanol which was acetylated as above to give 1-(3-unethylpheny2)- l-methylethyl acetate (63 based on m-bromotoluene), b.p.48-50 "C at 0.2 nimHg, nu20 1.495 7 (Found: C, 75.0; H, 8.3. CI2H,,O2 requires C, 75.0; H, 8.39), r(CC1,) 2.99 (4 H, m, ArH), 7.70 (s, ArCH,), 8.10 (s, COCH,), and 8.33 s, C(CH,),. 1-(4-Chlorophenyl)- l-methylethyl Acetate.-The reaction between acetone and p-chlorophenylmagnesium bromide gave crude 1- (4-chlorophenyl)-l-methylethanolwhich was acetylated as above to give 1-(4-chlorophenyl)-1-methylethyl acetate (80 based on p-bromochlorobenzene), b.p.62- 64 "C at 0.4 mmHg, nD201.510 8 (Found: C, 62.5; H, 6.25. Cl,Hl,CIO, requires C, 62.1 ; H, 6. 16y0), ~(Ccl,)2.82 (4 H, m, ArH), 8.10 (s, COCH,), and 8.33 s, C(CH,),. 1- (3-Chlorophenyl)- l-methylethyl Acetate.-The reaction between acetone and m-chlorophenylmagnesium bromide gave crude l-(3-chlorophenyl)-l-methylethanolwhich was acetylated as above to give l-(3-chlorophenyl)-l-methylethyl acetate (79 based on m-bromochlorobenzene), b.p. 50-52 "C at 0.2 mmHg, nD20 1.512 9 (Found: C, 62.3; H, 6.26y0), ~(Ccl,) 2.82 (4 H, m, ArH), 8.08 (s, COCH,), and 8.32 s, C(CH,),. 1-(2-Pyridyl)-1 -methylethyl A cetate .-2-Acetylpyridine was treated with methylmagnesium bromide to give crude 1-(2-pyridyl)- l-methylethanol which was acetylated as above to give 1-(2-pyridyl)- l-methylethyl acetate (3 1 yo based on ketone), b.p.60 "C at 0.8 mmHg, wD20 1.493 8 (Found: C, 67.2; H, 7.16, C1,H,,NO2 requires C, 67.0; H, 7.31y0), 7(CCl4) 1.58, 2.72 (4 H, m, ArH), 8.04 (s, COCH,), and 8.29 s, C(CH421.1-( 3-PyridyZ)- l-methylethyl Acetate.-Reaction of 3-acetyl- pyridine as above gave 1-(3-pyridyl)- l-methylethyl acetate (44 based on ketone), b.p. 77 "C at 0.7 mmHg, nDzo 1.499 8 (Found: C, 67.3; H, 7.31y0), z(CCl,) 1.49, 1.75, 2.48, 2.92 (4 H, m, ArH), 8.08 (s, COCH,), and 8.30 s, C(CH3)21. 1-(4-PyridyZ)-l-methylethyZA cetate.-Reaction of 4-acetyl- pyridine as above gave 1-(4-$yridyZ)- l-methylethyl acetate (43 based on ketone), b.p. 77 "C at 0.8 mmHg, nD20 1.501 4 (Found: C, 67.2; H, 7.29y0), T(CC1,) 1.48, 2.82 (4 H, m, ArH), 7.99 (s, COCH,), and 8.29 s, C(CH,),.The l-(X-pyridy1)ethyl methyl carbonates were each prepared from the corresponding alcohols by heating the latter to reflux with an excess of methyl chloroformate and pyridine during 2 h. Esterification is very slow and the esters showed a marked tendency to decompose so that longer reaction times were avoided. This resulted in some of the esters containing substantial quantities of alcohol from which they could not be separated by fractional distillation, again due to decomposition. Purification from other impurities was, however, effected by distillation on a Ruchi rotary still, and the presence of the alcohols was not a problem since these are inert under the pyrolytic conditions. l-(3-Pyridy1)ethyl methyl carbonate and 1-(4-pyridyl)ethyl methyl carbonate were distilled at 90 "C at 0.4 mmHg and 60 "C at 0.2 mmHg respectively.Pure 1-(2-pyridyl)ethyl methyl carbonate, b.p. 60 "C at 0.2 mmHg, nD20 1.488 0 was obtained by this method (Found: C, 59.6; H, 6.1. C,HllN03 requires C, 59.9; H, 6.1?amp;). l-Phenylethyl methyl carbonate was available from a previous Kinetic Studies.-These studies were carried out in the general manner described previou~ly,~~ and excellent first- order kinetic plots, linear to beyond 95 of reaction were obtained with each ester. Even with the most unreactive J.C.S. Perkin 11 ester the rate of the primary elimination is so fast compared to the rate of decomposition of acetic acid, that the latter is not observed; in this respect the reaction is superior to pyrolysis of the corresponding l-arylethyl acetate.The tendency to undergo surface-catalysed decomposition is, however, rather greater and very thorough deactivation of the surface is necessary (via multiple injections of but-3-enoic acid at 700 K). The absence of surface-catalysed elimination was demonstrated by the reproducibility of rate coefficients, linearity of the Arrhenius plots (over a 50 "C range) and constancy of the log (A/s-l) values; rate co-efficients were also independent of a 3-fold variation in the initial pressure for a given ester. As in the case of pyrolysis of l-arylethyl acetates, variations in rate are governed by activation energies rather than by the activation entropies the variation of which is within the limits of experimental error.We thank the University of Riyadh, Kingdom of Saudi Arabia, for a research grant (to H. B. A.). 8/806 Received, 2nd May, 19781 REFERENCES Part 17, H. B. Amin and R. Taylor, J.C.S. Perkin 11,1978, 1053. 2 R. Taylor, J.C.S. Perkin II, 1975, 1025. S. de Burgh Norfolk and R. Taylor, J.C.S. Perkin 11,1976, 280. H. B. Amin and R. Taylor, J.C.S. Perkin 11,1975, 1802. E. Glyde and R. Taylor, J.C.S. Perkin 11,1977, 1537, 1541. H. Kwart and J. Slutsky, J.C.S. Chem. Comm., 1972, 1182. 7 H. B. Amin and R. Taylor, J.C.S. Perkin 11,1978, 1090.H. R.Amin and R. Taylor, J.C.S. Perkin 11,1978, 1095. D. S. Noyce and D. A. Forsyth, J. Org. Chem., 1974,39, 2828. lo H. C. Brown and Y.Okamoto, J. Amer. Chpm. SOC., 1958,80, 4979. l1 H. C. Brown, ' The Non-Classical Ion Problem,' Plenum, New York, 1977, ch. 10. l2 H. C. Brown and M. H. Rei, J. Amer. Chem. SOC., 1964, 86, 5008; ref. 11, p. 197. l3 H. C. Brown, J. D. Brady, M. Grayson, and W. H. Bonner, J. Amer. Chem. SOC., 1957, 79, 1897. l4 Y.Okamoto and H. C. Brown, J. Amer. Chem. SOC., 1957,79, 1903. l5 Y.Okamoto and H. C. Brown, J. Amer. Chem. SOC., 1957,79, 1909. l6 V. J. Shiner, W. F. Buddenbaum, B. L. Murr, and G. Lamaty, J. Amer. Chem. SOC., 1968, 90, 418. l7 E. Glyde and R. Taylor, J.C.S. Perkin 11,1975, 1463. l8 E. Glyde and R. Taylor, J.C.S. Perkin 11,1977, 678. l9 R. Taylor, J. Chem. SOC., 1962, 4881; J. Chem. SOC. (B),1971, 2382. 2O G. G. Smith, K. K. Lum, J. A. Kirby, and J. Posposil, J. Org. Chem., 1969, 34, 2090. 21 T. J. Broxton, G. L. Butt, L. W. Deady, S. H. Toh, R. D. Topsom, A. Fischer, and N. W. Morgan, Canad. J. Chem., 1973, 51, 1620; D. S. Noyce, J. A. Virgilio, and B. Bartman, J. Org.Chem., 1973, 38, 2657. 22 P. Tomasik and C. D. Johnson, Adu. Heterocyclic Chem., 1976, 20, 1. 23 R. Taylor, J. Chem. SOC.(B),1971, 622. 24 R. Taylor, J. Chem. SOC. (B),1968, 1397. 0Copyright 1978 by The Chemical Society
机译:J.C.S. Perkin I1 通过酯类热解的亲电芳烃反应性。Part 18.l I-芳基-I-甲基乙基乙酸酯的热解:间位 Met hy I Su bst ituent 的高极化性 作者:Hassan B. Amin 和 Roger Taylor,“苏塞克斯大学分子科学学院,布莱顿 BN1 9QJ,苏塞克斯 在 590.8 和 529.6 K 之间测量的 1-芳基-I -甲基乙基乙酸酯范围的热解速率与 cr+ 值具有非常好的相关性。p 因子(550 K 时为 -0.743)几乎与反应性低得多的 1-芳基乙基乙酸酯的热解完全相同,这与相应氯化的 SN1 溶剂分解形成鲜明对比,其中甲基对侧链 a-碳正离子的电子供应增加,对芳基取代基稳定过渡态的需求减少,p 因子较小。在消除过程中,阳离子仅部分形成,叔酯的额外甲基的电子供应促进了 C-0 键断裂和更具极性的过渡态;因此,甲基取代基的相反作用不会产生P因子的净变化。过渡态电荷差异由(统计a{{y校正)三级:二级反应性比77证实,相对于p因子,该比相应的三级和二级氯化物的SN1溶剂分解速率之间的差异要大得多。mefa甲基取代基被证实在没有溶剂的情况下具有出色的极化性;在本反应和碳酸苯酯热解中,需要值为-0.1 3的碳酸苯酯来关联其作用。1-(2-吡啶基)-l-甲基乙基乙酸酯的反应性小于1-芳基乙酸酯和1-芳基乙基甲基碳酸酯的相应数据预测,并考虑了其原因。除了这种异常之外,来自所有三种酯类型的数据都证实了吡啶游离碱的 thecr+ 值为(括号中的位置):0.77(2),0.295(3)。和 0.86(4),并且在大多数溶液反应中获得的较大值是指氢键物质。L-芳基乙酸酯的热解是确定芳香族分子定量亲电反应性的模型反应。为了将一般技术扩展到测量非常不反应性的杂环的反应性,可能需要使用其他类型的酯,因为乙酸在一次消除所需时间内的二次分解变得足够大,足以干扰动力学。一种替代方法是使用1-芳基乙基甲基(或苯基)碳酸酯,即通过增加与酰基碳相连的基团的电负性来增加C-0键断裂的难易程度。这也导致二次分解变得瞬时,导致整体 stoicheio-metry 为 3.0 并且没有动力学并发症。本文研究的另一种方法是使用叔酯,其中消除率不仅通过增加额外的甲基对a-碳的电子供应而增加,而且还因为有更多的p-氢原子。此外,叔酯消除率的测量应该为我们的建议提供额外的测试,即(与早期的观点相反,在酯热解过渡态中产生的电荷不是恒定的,而是根据对a-碳的电子供应而变化。结果与讨论 动力学数据如表1所示,与相应的l-芳基乙酸酯热解相比,对数(A/s-l)值略大(约0.5个单位)。这是可以预料的,因为在乙酰氧基变成 &-共面 p-氢之前,需要较少的结构重组。然而,活化能比 l-芳基乙酸酯低得多(约 5 kcal mol-l),因为 l-芳基-l-甲基-乙酸乙酯的反应性要高得多,并且这些热解剂的一般特征是较高的反应性与较低的活化相关 数据给出了良好的 Hammett 相关性 l-芳基-l-甲基乙基乙酸酯在 550 K cr+ 值下热解的 b+ Hammett 图(图 1),p 在 550 K 时为 -0.743(在 600 K 时 =-0.68K),仅略大于1-芳基乙酸酯的热解(600 K时-0.66)。这些值与相应氯化物在 25 0C.9910 的 SN1 溶剂分解值一起显示在方案 1 中 很明显,在溶剂分解中,从仲化合物到叔化合物会导致 p 因子降低,因为 a-碳正离子通过额外的甲基获得额外的稳定性,并且 SQ 需要较少 1979 229 表 1 化合物 ArCMe 的热解,OAc E Ar 4-MeC,H4 TiK 583.7 103i4s-1 73.9 log (Ap) 12.87 kcal mol-1 37.4 Corr.coeff.0.999 75 log k/k, 0.234 575.2 42.7 559.4 17.0 542.7 6.30 529.6 2.64 3-MeC6H, 583.7 575.2 54.2 33.0 13.03 38.2 0.999 98 0.098 559.4 13.1 542.7 4.46 529.6 1.88 H 583.7 43.6 13.00 38.4 0.999 95 0 575.2 26.4 559.4 10.6 542.7 3.57 529.6 1.48 4-C1C6H4 583.7 37.8 13.08 38.7 0.999 95 -0.077 575.2 22.2 559.4 8.72 542.7 2.97 529.6 1.23 3-ClC,H 4 583.7 575.2 23.35 14.3 13.22 39.7 0.999 96 -0.295 559.4 5.48 542.7 1.76 529.6 0.719 3-吡啶基 590.8 583.7 42.4 28.7 2 13.23 29.5 0.999 99 -0.213 575.1 17.1 559.7 6.57 542.8 2.17 4-吡啶基 590.8 583.7 17.6 11.9 13.56 41.4 0.999 94 -0.642 575.1 6.77 559.7 2.53 542.8 0.789 2-吡啶基 590.8 583.7 16.9 11.7 13.65 41.6 0.999 79 -0.660 575.1 6.75 559.7 2.39 542.8 0.759 a 在 550 K.稳定相邻的芳基。酯热解中的多种状态电荷结构。与这种效应的例子(称为“增加溶剂分解的工具”)不同,仲酯和叔酯的过渡态电荷不同,但在 H CH3 后者中更大,因为额外的 I I 甲基释放了额外的电子。该甲基稳定了额外的 Ar-C-I CH、Ar -C-CH3 电荷,它产生的净结果是芳基稳定的 I OAc OAc 电荷量与 p 因子大致相同。(1) (11) 仲酯和叔酯热解的过渡态的极性差异也很明显 -0.66 -0.68 通过比较它们的反应性差异与相应的氯化物的 SN~溶剂分解的反应性差异。H y3 消除的统计学校正值为 I Ar-C-CH3 A r -C-CH,与方案 2 中的溶剂分解值一起给出。在I I Ct CL消除中,三级:二级速率比的一致性源于这些比率对酯类型的一般相对不敏感,2并且从(11.11(IY)含苯基和甲基--6.00-4.54的酯的相似反应性,因此过渡态电荷将相似。从这些数据中可以看出两个特征。SCHEME1 p 消除乙酸盐的因素(600 K时) 氯化物的溶剂分解(298 K时) (i) 在每种情况下,苯基的活化都超过SN~,它所取代的甲基。然而,在溶剂-电子需求')中,最近由H整理。C.裂解,这种活化是4580倍的次级布朗.11这在消除和氯化物中不会发生,对于叔氯化物是227倍,原因证实了我们之前对过渡的分析-后者获得的较低值,因为要稳定的净正电荷较少(如p因子的差异所示)。然而,对于酯类,在二级和三级系列中都获得了约3.78的恒定值,因为两个系列中的净正电荷相同(也由p因子表示)。(ii)仲甲基化叔氯和相应的甲基化叔氯在溶剂分解中的反应性差异为55 000和2 730。应用于热解的近似值 F 可以从平均 p 因子的比率和这些反应性差异的平均值计算得出,因此: F = 抗对数 [log 29 000 x (0.67/5.3)]= 3.7.在消除 (77.4) 中观察到的值远远大于此值 H H I I Me-C-Me Ph-C-Me I I OAc OAc OAc 1 3.77 H HI I Me-C-Me Ph-C-Me I I CI c1 (V) 1 4580 J.C.S. PerkinI1偏差排除了实验误差或表面催化消除引起的误差。此外,这些酯不是从共同的前体中衍生出来的,因此其中的杂质不是原因。在热解之前或期间也不需要重新排列,因为这在最高温度下最有效,而在最低温度下研究的消除效果最显着。(与实验观察结果相反,这种重排也会导致较差的一阶动力学。由于 o+ (m-Me) 的值在过渡态中随着电荷的增加而增加,因此我们得出的结论是,rn-甲基取代基能够在气相中表现出特殊的极化性,而不是 Me Me I I Me-C-Me Ph-C-Me I I OAc OAc OAc 77.3 293 (77.5) Me Me I I Me-C-Me Ph-C-Me I I CL Ct (YI) 55000'* 125 x 107 (1) (2730)* 经过统计校正,允许@-氢的数量 方案 乙酸盐热解消除和 SN~2 氯化物溶剂分解中的相对反应性 * 这可以通过两种方式计算:RVI (25“) = 12.4 x s-l 在 90% 丙酮水溶液中,13 和 kv (25') 在文字中估计为 5.86 x lo-' SPin 80% 丙酮水溶液。I4 据报道,两种介质的差异在 25 T,15 时的反应性差异为 12.9,因此 (VI) : (V) 反应性差异为 (12.4 x 12.9)/0.0586 = 2 730.kv (25') 的值也可以根据 (V) 在 25 “C (1.04 x lOW5s-l)9 下在 80% 乙醇水溶液中的溶剂分解速率和 80% 水性乙醇和 80% 水性 acetone.ls 17 的反应性差异来计算因此,(V) 的速率系数为 (1.04 x 10-j) s-'/ 17 = 6。12 x lo-' s-l 与上述值非常吻合。这些数据表明,参考文献 11 第 198 页中给出的 (VI) 相对于异丙酰氯 (2.6 x loB) 的反应性计算是错误的。因为叔酯的过渡态比仲酯的过渡态更具极性。间甲基取代基的功效-从图中可以明显看出,间甲基取代基的活化程度超过其G+值的预测值(即使使用-0.098的值,从l-芳基乙酸乙酯的热解重新定义)。这种行为不仅限于目前的结果和所需的 o+ 值 表 2 酯热解中所需的 Q+ (m-Me) 值 反应 p 在 600 K m+ 参考 l-芳基乙基乙酸酯 -0.06 -0.098 17 l-芳基乙基苯甲酸酯 -0.72 -0.115 8 l-芳基乙基苯基 -0.84 -0.130 7 碳酸酯 l-芳基-l-甲基乙基 -0.68 -0.130 该乙酸盐功将这种取代基效应与表 2 给出的四种气相消除相关联。持久性可利用的9-甲基取代基。目前,我们不知道这种机制可能是什么。由于现在已知烷基在同一方向上的诱导效应和超共轭效应1',因此可以合理地假设对于烷基,一般op+ -om+ =常数。对于叔丁基 op+ = -0.365,而 om+ = -0.19,所以这个差值 = -0.175。将其应用于甲基,我们得到 ova+(predicted) = -0.311 -(-0.175) = -0。136,因此在一些消除中获得的崇高价值似乎并非没有道理。本工作更加强调地表明,溶液反应中间烷基的电子效应在多大程度上被溶剂化的空间位阻所掩盖.18 2-吡啶基团的功效-从l-芳基乙酸酯的热解中测定了吡啶的每个位置的B+值,如表3所示.19这些值与理论预测具有极好的定量相关性。表3中还给出了1979年l-芳基-l-甲基乙基乙酸酯热解的值,从中可以看出,表3 o+-吡啶的常数,由酯的气相热解确定 位置 2 3 4 酯 0.78 0.295 0.87 l-芳基乙酸酯 0.89 0.285 0.86 l-芳基-l-甲基乙基乙酸酯 0.76 0.30 0.85 l-芳基乙基甲基碳酸酯 3 位和 4 位得到精确确认, 而 2 位的常数似乎异常大, 为了确定其原因,我们热解了相应的 l-芳基乙基甲基碳酸甲酯,其中 p 可以在 600 K 时从参考文献 20 中给出的数据计算为 -0.71。动力学数据见表4,得到a+值(表3),其中表4 l-芳乙基甲基碳酸酯的热解,ArCHCH30C00Me 107klS-1 T/K Ar = 2-Py 3-Py 4-Py Ph 665.4 62.4 128 52.8 650.4 30.5 61.6 25.8 45.0 634.5 13.55 28.9 11.7 15.2 613.8 4.44 9.44 3.80 6.51 599.3 4.11 2.23 579.9 相关性 0.999 99 0.999 94 0.999 97 0.999 76 系数对数 (A/s-yE/kcal mol-' log k/k, (at 12.46 41.61 -0.5405 12.61 41.11 -0.212 12.31 41.36 -0.604 12.56 40.395 0 600 K) 与得到的 l-芳基乙酸酯完全一致,并进一步表明吡啶在 l-芳基-l-甲基乙酸酯热解中的 2 位值是异常的,可能的解释如下。i) 2-位的失活可能主要来自直接场效应,这可能更重要,因为在 l-芳基-l-亚甲基乙酸酯的热解中,侧链 a-碳处产生的电荷更大。必须反对这一论点:(a)p因子表明丙酯中芳环离域的净电荷与乙酯相同,(b)碳酸盐热解的侧链a-碳的净电荷大于乙酸盐,但2-吡啶基取代基在碳酸盐热解中表现正常。(ii)氮上的孤对电子在空间上阻止了位于芳环平面上的甲基,这是a-碳处的初始p轨道与环的p轨道最大重叠所必需的。无论如何,孤对电子似乎不太可能比邻位 C-H 键更笨重。因此,我们目前无法正确解释这种异常现象,并得出结论,使用l-芳基-l-甲基-乙基乙酸酯作为评估非常不反应性杂环反应性的手段不如使用碳酸盐令人满意。将气相 a+ 值(描述游离碱的反应性)与溶液 21(括号中的位置)中获得的值进行比较:0.74(2)、0.55(3) 和 1.15(4) 表明,虽然 2 位的值非常吻合,但 3 位和 4 位的位的求解值约为 0.25 Q 单位太正了。我们认为这是因为后一个值指的是氢键物质,而不是游离碱。然而,当探针基团 (CHMeC1) 连接到 2 位时,氢键可能会受到空间阻碍,因此溶液中确定的值 (0.74) 与气相值非常吻合。事实上,重要的是,最近在极地介质中获得的 a 的平均值(不太可能与 a+ 有很大差异)22 是:0.76(2)、0.57(3) 和 1.04(4),并且 2 位的值再次与气相值非常吻合,但其他值更为正。另一方面,在非极性溶剂中获得的 B 值在每个位置与气相值 z2 更接近 鉴于这些结果,Q 值与溶剂无关的概念 22 似乎难以维持。实验 将L-苯基-L-甲基乙基乙酸酯-苯乙酮与甲基溴化镁反应转化为L-苯基-L-甲基乙醇,并用吡啶和乙酸酐乙酰化,并以通常的方式进行加工。分馏得到l-苯基-l-甲基乙基乙酸酯(38%基于酮),b.p.52-54“C,0.8mmHg,nD201.498 2(发现:C,74.4;H,7.75。C,1H,402要求C,74.1;H, 7.92%), ~(Ccl,) 2.81 (5 h, m, ArH), 8.14 (s, COCH,) 和 8.32 [s, C(CH,),].1-(4-甲基苯基)-l-甲基乙基 A 十六酯 .-4-甲基苯乙酮如上所述转化为粗的 1-(4-甲基-苯基1)-L-甲基乙基乙酸酯(48% 基于酮)。这种化合物在热上非常不稳定,如果不进行非常广泛的分解,就无法进行分馏。然而,通过使用 Buchi 旋转蒸馏器在 60 英寸 C 和 0.5 mmHg 压力下非常缓慢地蒸馏来实现合理的纯化。这得到了一种无色产物,n.m.r.显示其含有少量的a,4-二甲基苯乙烯;T(CC1,) 2.92 (4 H, m, ArH), 7.75 (s, ArCH,), 8.12 (s, COCH,) 和 8.33 [s,C(CH,),]。然而,这不会干扰动力学研究,因为它是热解产物。用这种方法制备相应的4-甲氧基化合物的尝试没有成功。1-(3-甲基苯基2)-L-甲基乙基A十六酸酯。-丙酮与间甲苯基溴化镁反应得到粗1-(3-甲基苯基)-L-甲基乙醇,如上所述乙酰化得到1-(3-单乙基苯基2)-L-甲基乙基乙酸酯(63%基于间溴甲苯),b.p.48-50“C,0.2 nimHg,nu20 1.495 7(发现:C,75.0;H,8.3。CI2H,,O2 需要 C, 75.0;H, 8.39%), r(CC1,) 2.99 (4 H, m, ArH), 7.70 (s, ArCH,), 8.10 (s, COCH,) 和 8.33 [s, C(CH,),]。1-(4-氯苯基)-L-甲基乙基乙酸酯-丙酮和对氯苯基溴化镁反应得到粗品1-(4-氯苯基)-L-甲基乙醇,如上所述乙酰化,得到1-(4-氯苯基)-1-甲基乙酸乙酯(80%基于对溴氯苯),b.p.62-64“C,0.4 mmHg,nD201.510 8(发现:C,62.5;H,6.25。Cl,Hl,CIO,要求 C,62.1 ;H, 6.16y0)、~(Ccl,)2.82 (4 H, m, ArH)、8.10 (s, COCH,) 和 8.33 [s, C(CH,),]。1-(3-氯苯基)-L-甲基乙基乙酸酯-丙酮与间氯苯基溴化镁反应得到粗L-(3-氯苯基)-L-甲基乙醇,如上所述乙酰化,得到L-(3-氯苯基)-L-甲基乙酸乙酯(79%基于间溴氯苯),b.p.50-52“C,0.2 mmHg,nD20 1.512 9(发现:C,62.3;H, 6.26y0), ~(Ccl,) 2.82 (4 H, m, ArH), 8.08 (s, COCH,) 和 8.32 [s, C(CH,),]。1-(2-吡啶基)-1-甲基乙基A十六烷酸酯 .用甲基溴化镁处理-2-乙酰基吡啶,得到粗1-(2-吡啶基)-L-甲基乙醇,如上所述乙酰化得到1-(2-吡啶基)-L-甲基乙酸乙酯(3 1 年基于酮),b.p.60“C,0.8 mmHg,wD20 1.493 8(发现:C,67.2;H, 7.16, C1,H,,NO2 需要 C, 67.0;H, 7.31y0), 7(CCl4) 1.58, 2.72 (4 H, m, ArH), 8.04 (s, COCH,) 和 8.29 [s, C(CH421.1-( 3-PyridyZ)- l-甲基乙基乙酯 3-乙酰基-吡啶如上反应得到1-(3-吡啶基)-L-甲基乙基乙酸酯(44%基于酮),b.p. 77“C at 0.7 mmHg, nDzo 1.499 8 (发现: C, 67.3;H, 7.31y0), z(CCl,) 1.49, 1.75, 2.48, 2.92 (4 H, m, ArH), 8.08 (s, COCH,) 和 8.30 [s, C(CH3)21. 1-(4-吡啶Z)-l-甲基乙醚ZA cetate.-4-乙酰基吡啶反应如上得到1-(4-$yridyZ)-L-甲基乙基乙酸酯(43%基于酮),b.p. 77“C at 0.8 mmHg, nD20 1.501 4 (Found: C, 67.2;H, 7.29y0), T(CC1,) 1.48, 2.82 (4 H, m, ArH), 7.99 (s, COCH,), 和 8.29 [s, C(CH,),].l-(X-吡啶1)乙基甲基碳酸酯由相应的醇类在2 h内用过量的氯甲酸甲酯和吡啶加热回流制备。酯化非常缓慢,酯类表现出明显的分解倾向,从而避免了更长的反应时间。这导致一些含有大量酒精的酯类,由于分解,它们无法通过分馏从中分离出来。然而,通过在Ruchi旋转蒸馏器上蒸馏来实现其他杂质的纯化,并且醇的存在不是问题,因为它们在热解条件下是惰性的。将l-(3-吡啶1)乙基碳酸甲酯和1-(4-吡啶基)乙基甲基碳酸酯分别在90“C(0.4 mmHg)和60”C(0.2 mmHg)下蒸馏。该方法得到纯1-(2-吡啶基)乙基甲基碳酸酯,b.p. 60“C at 0.2 mmHg,nD20 1.488 0(Found: C, 59.6;H,6.1。C,HllN03 需要 C, 59.9;H,6.1?&)。l-苯乙基碳酸甲酯可从先前的动力学研究中获得,这些研究以先前描述的一般方式进行~ly,~~,并且与每种酯获得了优异的一阶动力学图,线性至超过95%的反应。即使使用最不活泼的 J.C.S. Perkin 11 酯,与乙酸的分解速率相比,初级消除的速率也非常快,以至于没有观察到后者;在这方面,该反应优于相应L-芳基乙酸酯的热解。然而,发生表面催化分解的趋势更大,并且需要非常彻底地使表面失活(通过在700K下多次注入but-3-enoic acid)。速率系数的可重复性、Arrhenius 图的线性(超过 50 “C 范围)和对数 (A/s-l) 值的恒定性证明了没有表面催化消除;速率系数也与给定酯的初始压力的 3 倍变化无关。与L-芳基乙基乙酸酯的热解情况一样,速率的变化由活化能而不是活化熵控制,活化熵的变化在实验误差的范围内。我们感谢沙特阿拉伯王国利雅得大学(H.B.A.)提供的研究资助。[8/806 收稿日期:19781 年 5 月 2 日 参考文献 第 17 部分,H. B. Amin 和 R. Taylor,J.C.S. Perkin 11,1978,1053。 2 R. Taylor, J.C.S. Perkin II, 1975, 1025. S. de Burgh Norfolk 和 R. Taylor, J.C.S. Perkin 11,1976, 280. H. B. Amin 和 R. Taylor, J.C.S. Perkin 11,1975, 1802. E. Glyde 和 R. Taylor, J.C.S. Perkin 11,1977, 1537, 1541. H. Kwart 和 J. Slutsky,J.C.S. Chem. Comm.,1972 年,1182 年。7 H. B. Amin 和 R. Taylor, J.C.S. Perkin 11,1978, 1090.H. R.Amin and R. Taylor, J.C.S. Perkin 11,1978, 1095.查看原文查看译文D. S. Noyce 和 D. A. Forsyth, J. Org. Chem., 1974,39, 2828.lo H. C. Brown 和 Y.Okamoto, J. Amer. Chpm. SOC., 1958,80, 4979.l1 H. C. Brown,“非经典离子问题”,全会,纽约,1977年,第10章。l2 H. C. Brown 和 M. H. Rei, J. Amer. Chem. SOC., 1964, 86, 5008;参考文献11,第197页。l3 H. C. Brown, J. D. Brady, M. Grayson, and W. H. Bonner, J. Amer. Chem. SOC., 1957, 79, 1897.l4 Y.Okamoto 和 H. C. Brown, J. Amer. Chem. SOC., 1957,79, 1903.l5 Y.Okamoto 和 H. C. Brown, J. Amer. Chem. SOC., 1957,79, 1909.l6 V. J. Shiner, W. F. Buddenbaum, B. L. Murr, and G. Lamaty, J. Amer. Chem. SOC., 1968, 90, 418.l7 E. Glyde 和 R. Taylor, J.C.S. Perkin 11,1975, 1463.l8 E. Glyde 和 R. Taylor, J.C.S. Perkin 11,1977, 678.l9 R. Taylor, J. Chem. SOC., 1962, 4881;化学学报 (B),1971, 2382.2O G. G. G. Smith, K. K. Lum, J. A. Kirby, and J. Posposil, J. Org. Chem., 1969, 34, 2090.21 T. J. Broxton, G. L. Butt, L. W. Deady, S. H. Toh, R. D. Topsom, A. Fischer, and N. W. Morgan, Canad. J. Chem., 1973, 51, 1620;D. S. Noyce, J. A. Virgilio, 和 B. Bartman, J. Org.Chem., 1973, 38, 2657.22 P.托马西克和C.D.约翰逊,阿杜。杂环化学, 1976, 20, 1.23 R. Taylor, J. Chem. SOC.(B),1971, 622.24 R. Taylor, J. Chem. SOC. (B),1968, 1397.0Copyright 1978 化学学会

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号