...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Formation andX-ray crystal structure of 5,6-dihydro-1-hydroxy-5,5-dimethyl-1-phenyl-3-phenylamino-1H-pyrrolo1,2-a1,5benzodiazepin-2(4H)-one
【24h】

Formation andX-ray crystal structure of 5,6-dihydro-1-hydroxy-5,5-dimethyl-1-phenyl-3-phenylamino-1H-pyrrolo1,2-a1,5benzodiazepin-2(4H)-one

机译:5,6-二氢-1-羟基-5,5-二甲基-1-苯基-3-苯基氨基-1H-吡咯并1,2-a1,5苯并二氮杂卓-2(4H)-酮的形成和X射线晶体结构

获取原文
           

摘要

J. CHEM. soc. PERKIN TRANS. 11 1986 Formation and X-Ray Crystal Structure of 5,6-Dihydro-I -hydroxy-55dimethyl-1-phenyl-3-phenylamino-l H-pyrrolol,2-a 11.51 benzodiazepin-2(4H)-one t Maria C. Aversa." Placido Giannetto, and Alida Ferlazzo Dipartimento di Chimica organica e biologica, Universita di Messina, Piazza S. Pugliatti, 98100 Messina, Italy Giuseppe Bruno Dipartimento di Chimica inorganica e Struttura molecolare, Universita di Messina, Piazza S. Pugliatti, 98100 Messina, Italy The reaction of 2,3-dihydro-2,2,4-trimethyl-lH-l,5-benzodiazepine (1) with (Z)-N- (benzoyl- methy1ene)aniline N-oxide in anhydrous benzene at room temperature gave 5,6-dihydro-l -hydroxy-5,5-dimethyl-1 -phenyl-3-phenylamino-l H-pyrrolo 1,2-a 1,5 benzodiarepin-2(4H) -one (2),accom-panied by several by-products.The structure of compound (2), the first example of a tetra-hydropyrrolol ,2-a1,5 benzodiazepine derivative, was established by an X-ray crystallographic analysis. A mechanism for its formation is suggested. Many benzodiazepine derivatives bearing further condensed heterocyclic nuclei are of pharmacological importance. In our search for new benzodiazepines with a heterocyclic ring fused to the seven-mumbered one,' we have investigated the reactivity of nitrones towards 2,3-dihydro-1 H-1,5-benzodiazepine deriv- atives. We report here the isolation of the major product from the reaction of compound with an excess of (2)-N-(benzoylmethy1ene)aniline N-oxide and its identification as 5,6-dihydro- 1 -hydroxy-5,5-dimet hyl- 1 -phenyl-3-phenylamino- 1 H-pyrrolo 1,2-a 1,5 Jbenzodiazepin-2(4H)-one(2) (the yield of pure product does not exceed 20).Tetrahydropyrrolo- 1,2-a 1 ,SJbenzodiazepine derivatives have apparently not been prepared previously. However, 4H-pyrrolo 1,2-a 1,s)- benzodiazepin-5(6H)-one is formed in low yield by reaction between l-(o-acetamidophenyl)-2-dimethylaminomethylpyr-role methiodide and potassium ~yanide.~ The benzodiazepine (1) was treated in anhydrous benzene with an excess of the nitrone at room temperature under nitrogen. The solvent was evaporated off and the reaction mixture was subjected to repeated column and layer chromatography. The main product (2), C2,H,,N302, was obtained as yellow prisms, m.p.134-136 "C (from methanol). The i.r. spectrum (NUJO~ mull) suggested the presence of a carbonyl group conjugated with an unsaturated system (vmaX.1657 cm-') and possibly amino and hydroxy groups (3 250 and 3 380 cm-*). The 'H n.m.r. spectrum (CD,OD) showed an AB system (6, 2.86, 6, 2.54, JAB -12.0 Hz), and only two methyl signals (two singlets at 1.38 and 1.32), in the range for the geminal 2-methyl groups in the starting material (I).' The AB system may be attributed to the methylene protons, which resonate as a singlet in the bicyclic product (1) and become magnetically inequivalent in tricyclic derivatives.'' The structure (2) was established unambigously by X-ray analysis (see later). The formation of (2), which is stabilized by an extended delocalization of the N( 11) lone pair towards O(19) (see the Figure for atom labelling), may be rationalized as follows.First the nitrone acts as an oxygen donor'" towards the benzo- diazepine (I), the 5-oxide (3)of which undergoes dipoledipole interaction 6b with unchanged nitrone, yielding the inter-t Supplementary data available (SUP 56596, 4 pp.): full list of bond angles, temperature factors, hydrogen co-ordinates. For details of Supplementary Publications see Instructions for Authors, J. Chem. Soc., Perkin Trans. 2, 1986, Issue no. 1. mediate tricyclic dioxadiazine (4) (not isolated). Intramolecular rearrangement of a tautomer of (4) affords (9,which contains a -C(OH)Ph-CO- moiety in the six-membered heterocyclic ring: this suggested rearrangement (4) to (5) is reminiscent in part of that observed in the reaction of the same nitrone with allene or ketene dimer.3" Then ring contraction occurs, involving the angular methyl group, to yield the intermediate (6). The final product (2) is formed from (6) by dehydration, which follows the migration of the phenylhydroxyamino group from C(2) to C(3).Table 1. Fractional atomic co-ordinates ( x lo4),with e.s.d.s in the least significant digits in parentheses, for compound (2) X Y Z 1453(9) 1 128(5) 6 277(6) 102( 11) 742(5) 5 267(6) -1 618(9) 1 176(5) 5 289(6) -1 442(9) 1781(5) 6 193(6) -2 847( 10) 2 398(5) 6 588(7) -2 530(10) 3 226(5) 5 919(7) 555(7) 3 247(4) 7 153(5) 1358(7) 3 901(4) 7 841(5) 2 577(7) 3 757(4) 8 913(5) 2 992(7) 2 959(4) 9 295(5) 2 189(7) 2 304(4) 8 607(5) 97W7) 2 448(4) 7 536(5) 2 OlO(6) 518(5) 7 288(6) 3 841(6) 205(5) 7 361(6) 4 297(6) -408(5) 8 264(6) 2 923(6) -709(5) 9 093(6) 1093(6) -396(5) 9 019(6) 636(6) 217(5) 8 117(6) -3 294(6) 1073(5) 3 177(5) -5 016(6) 933(5) 2 522(5) -5 149(6) 1 002(5) 1 158(5) -3 562(6) 1212(5) 450(5) -1 841(6) 1 353(5) 1 106(5) -1 707(6) 1 284(5) 2 469(5)-3 118(12) 3 196(6) 4 520(8) -3 63q12) 3 873(6) 6 664(9) 1 855(15) 2 952(8) 2 934(9) -490(8) 3 402(5) 5 992(6) 264(8) 1787(0) 6 817(5) -3 231(9) 1 oOo(5) 4 501(6) 3 058(7) 1 454(4) 5 704(5) 569(7) 166(5) 4 585(5) 1770(8) 2 615(5) 4 164(5) 1534 J.CHEM. SOC. PERKIN TRANS.II 1986 Me HO BzCH =N(O)Ph ______) Me (1 ; n = 0) (3;n = 1) H OH Bz ,Ph Ph?? Ph$)$ph Table 3. Selected bond angles (") for compound (2), with e.s.d.s in /Ph parentheses 0 C(l)-C(2)-C(3) 108.0(6) C( 1 )-C(2)-0( 19) 12 1.9( 7) HO N-(-Me "O N C(3)-C(2)-0(19) 130.1(6) C(2)-C(3)-C(3a) 108.3(6)/ / C(2)-C(3)-N(20) 125.2(6) C(3a)-C( 3)-N(20) 126.5(6) C(3)-C(3a)-N(11) 113.0(6) C(3)-C(3a)-C(4) 129.2(6) C(4)-C(3a)-N( 11) 117.8(5) C(3a)-C(4)-C(5) 1 12.0(6) C(4)-C(5W(27) 1 1 1.0(7) C(4)-C( 5)-C(28) 108.0(6) C(4)-C(5tN(6) 107.7(6) C(27)-C(5)-C(28) 11 1.5(7) C(27)-C(5)-N(6) 107.9(6) C(28)-C(5)-N(6) 1 10.5(6) Q C(5)-N(6)-c(6a) 120.2(5) C( 10a)-C(6a)-N(6) 120.6(5) C(6a)-C(lOa)-N(ll) 120.8(4) C(3a)-N(ll)-C(lOa) 123.9(4) C( 1 )-N(11 )-C(3a) 109.2(4) C(1)-N(11)-C( 10a) 124.1(3) N(ll)-C(1)-0(12) 110.6(6) C(2)-C(l)-N(ll) 101.5(5) C(2)-CUW(13) 110.0(6) C(2)-C(1)-0(12) 112.3(5) C( 13)4( 1 )-0(12) 1 10.1(5) C(3)-N(20)-C(21) 123.8(6) Table 4.Some torsion angles (") for compound (Z), with e.s.d.s in parentheses C( 1 )-N( 1 l)-C( lOa)-C( 10) -51.3(8) C(3)-N(20)4(21)-C(22) -175.8(6) C(3a)-C(3)-N(20)4(21) 114.9(9) C(3a)-C(4)-C(5)4(27) 73.6( 8) C(3a)-C(4)-C(5)-C(28) -163.8(6) C(3a)-N( 1IF( l)-C( 13) -1 18.5(6) C(3aFN(1 1)-C(lW(12) 1 18.2(6) C(3a)-N(1 l)-C(lOa)-C(6a) -34.1(8) C C~l~a)-C(6a)-N(6)-C(5) 72.3(8) N(ll)-C(l)-C(13)-c(14) -137.9(6) N( 1 1 )-C(3a)-C(4)-C(5) 82.2(8) An extensive chromatographic separation of the crude Figure. Stereodiagram of (2) with the atomic notation used in the reaction mixture allowed the isolation, along with (2), of small Tables; hydrogen atoms have the same numbers as the atoms to which amounts of unchanged (1) and several by-products, all showing they are attached, unless otherwise stated merely aromatic peaks in their n.m.r.spectra. X-Ray Crystal Structure of Compound (2).-A general view of the molecule with the labelling of the atoms is shown in the Figure. Atomic co-ordinates and their estimated standard Table 2. Bond lengths (A) for compound (2), with e.s.d.s in the least deviations are in Table 1. Bond distances and selected bond and significant digits in parentheses torsion angles are given in Tables 2-4. The molecule (2) possesses a 1,5-benzodiazepine system, the a C( 1 )-cm 1.525(10) C(l)-C(13) 1.482(10) edge of which is fused to a pyrrole nucleus.The molecular C(lkN(11) 1.4amp;y8) C( 1 )-O( 12) 1.398(9) packing is mainly due to van der Waals interactions and C(2)-C(3) 1.41 2( 10) C(2)-0(19) 1.223(10) intermolecular hydrogen bonds involving O(12), O(19), N(20), C(3)-c(3a) 1.357(10) C(3 jN(20) 1.410(9) and N(6) (Table 5). There are also two intramolecular hydrogen C(3a)-c(4) 1.482(11) C(3a)-N( 11) 1.352(8) bonds involving one molecule of methanol of crystallizationC(4l-W) 1.538(11) C(5)-C(27) 1.476(11) 0(29) N(6) 2.802,0(29) 9 O(12) 2.616 A.C(5)-C(28) 1.530( 12) C(5)-N(6) 1.475(9)C(6a)-C( 1Oa) 1.395(9) C(6a)-N(6) 1.404(8) The seven-membered ring has a boat conformation which can C(l0a)-N(l1) 1.395(7) C(21)-N(20) 1.355(8) be described with respect to the least-squares plane through the C-C(aromatics) 1.395 C(30)-0(29) 1.372(11) fused benzene ring (A): the displacements of N(6) and N( 11) from this plane are 0.155 and 0.074 A, while C(3a), C(4), and J.CHEM. SOC. PERKIN TRANS. II 1986 Table 5. Hydrogen bonds for compound (2) A-H * * D A -D(A) A-H - - -D(") O(12)-H( 12) -O(29)i 2.62(1 ) 165.3(4) 0(29)-H(29). -N(6)i 2.80(1) 166.0(4) N(20)-H(20) -O(12)ii 3.02(1) 169.0(5) N(6)-H(6) -O(19)iii 2.95(1) 168.3(4) Symmetry code: (i) x, y, z; (ii) x -1, y, z; (iii) -x, y + 4, --z + 1. C(5) are out of plane by -0.48, -1.53, and -0.94 A, respec-tively. The five-membered ring is planar to a good approxim- ation, O(19) and N(20) being 0.014 and -0.024 A out of plane.The aromatic rings A, B, and C make angles of 45.7, 92.5, and 117.4" respectively with the plane containing the pyrrole nucleus. The C(10a)-N( 1 1) and C(6a)-N(6) bond distances 1.395(7) and 1.404(8) A, respectively agree with corresponding values for related compounds.* Although N( 1 1) displays a tetrahedral rather than a trigonal configuration, being -0.135 A out of the plane C(1)-C(3aC( lOa), the modifications of bond lengths in the N( 1 l)-C(3a)-C(3)-C(2) moiety suggest an extended electron delocalization over the system. Other bond lengths are what one would expect for such a molecule. Experimental M.p.s were determined with a Kofler hot-plate apparatus. 1.r. spectra were taken for Nujoi mulls with a Perkin-Elmer 225 spectrophotometer and 'H n.m.r.spectra were determined for solutions in CDCl, or CD,OD with a Varian EM 360 A instrument (internal standard SiMe,). T.1.c. was performed on silica gel sheets (Stratocrom SIF Carlo Erba) and Merck 60 PF254 silica plates, developed with diethyl ether-ethyl acetate (95 :5), and column chromatography on Riedel-de Haen silica gel S (0.063-4.2 mm; 70-230 mesh ASTM). 5,6-Dihydro-1-hydroxy-5,5-dimethyl- 1 -phenyl-3-phenyl- amino- 1 H-pyrrolo 1,2-a 1,5)benzodiazepin-2(4H)-one (2).-The benzodiazepine' (1) (1.9 g, 10 mmol) and (Z)-N-(benzoyl- methy1ene)aniline N-oxide 3u (2.7 g, 1.2 mmol) in anhydrous benzene (30 ml) were stirred at room temperature in the dark under nitrogen for 24 h.The solvent was evaporated off under reduced pressure, and the brown residue was subjected to column chromatography with light petroleum-diethyl ether (1 :l), then with 100 diethyl ether, to give small amounts of (1) and several by-products. Final elution with diethyl ether-ethyl acetate (95 :5) gave the pyrrolobenzod@zepinone (2) (1.0 g), which was further purified by preparative t.1.c. (Found: C, 76.0; H, 6.1; N, 10.5. C2,H25N,02 requires C, 75.9; H, 6.1; N, 10.2); m.p. 134-136 "C (from methanol); vmax.3 380, 3 250, 1 657, 1 448,and 1 357 cm-'; G(CD,OD) 1.32 and 1.38 (each 3 H, s, 5-Me), 2.54 and 2.86 (each 1 H, ABq, J -12 Hz, 4-H), and 6.5-8.0 (14 H, m, ArH). Crystal Structure Analysis of the Pyrrolobenzodiazepinone (2).-Crystal data.C2,HZ9N3O3, A4 = 443.5. Monoclinic, a = 7.087(1), b = 16.387(3), c = 10.193(2) A, = 91.44(1)", U = 1 183.5(4) A3, 2 = 2, D, = 1.24 g cm-', F(OO0) = 472. Space group P2,,p = 0.76 cm-' for Mo-K, radiation, h = 0.710 69 A. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanolic solution. A crystal of dimensions 0.2 x 0.2 x 0.4 mm was used for the measurement at 23 "C with a Siemens-Stoe four-circle diffractometer. Accurate unit- cell dimensions and crystal orientation matrices were obtained from least-squares refinement of 28, w, x, and cp values of 22 reflections in the range 14 28 26". Crystal and electronic stability was confirmed by the constancy of three reference reflections, the intensities of which were monitored every 120 min.Of 1 648 independent reflections, measured by the o/8 scan technique in the range 3 28 46", 1 301 having net intensity I 3c(I) were used in the structure refinement. Lorentz and polarization corrections were made, but not absorption corrections. Structure determination. The structure was solved by direct methods with the MULTAN 80 ~ystem;~ the following calcul- ations were mainly carried out by the SHELX-76" and PARST" systems of programs. All the H atoms were found from the difference Fourier map. However, only the H atoms involved in hydrogen bonds were actually refined; the others were assigned calculated positions (C-H distance 1.08 A). The structure was refined by the full-matrix least-squares method; anisotropic temperature factors were introduced for all non- hydrogen atoms except those belonging to the aromatic rings.These were refined as rigid groups and restricted to their normal geometry (D6,,symmetry, C-C 1.395 A) by using the group refinement procedure. Each ring was assigned six variable positional parameters, and each ring carbon atom was assigned an individual isotropic thermal parameter. The final R value was CIFoI -IFJ/ClF,,I = 0.06 and R, was Cw(lFoI -IFc1)'/Cw(F01'*= 0.064. The weighting scheme used in the last refinement cycles was w = 3.251/a2(F0) + O.OOOO1 FO2.Refinement of possible enantiomers showed no difference in R value and no assignment of absolute configuration could be made.Final difference map peaks were in the range 0.3-0.5 e A-3. Scattering factors for the non-hydrogen atoms were taken from Cromer and Mann ' and for H from Stewart. ' Acknowledgements We thank the Minister0 della Pubblica Istruzione (Roma) for financial support. References 1 (a)M. C. Aversa, P. Giannetto, A. Ferlazzo, and G. Romeo, J. Chem. Soc., Perkin Trans. I, 1982,2701;(6) M. C. Aversa and P. Giannetto, J. Chem.Soc., Perkin Trans. 2,1984,8 1; (c)M. C. Aversa, A. Ferlazzo, P. Giannetto, and F. H. Kohnke, Synthesis, 1986, 230; (d) M. C. Aversa, A. Ferlazzo, P. Giannetto, F. H. Kohnke, A. M. Z. Slawin, and D. J. Williams, J. Heterocycf. Chem., in the press. 2 W. Ried and P. Stahlofen, Chem. Ber., 1957,90, 815. 3 (a) M. C. Aversa, G.Cum, I. Stagno d'Alcontres, and N. Uccella, J. Chem. SOC.,Perkin Trans. I, 1972,222; (b)Y. Inouye, K. Takaya, and H. Kakisawa, Magn. Reson. Chem., 1985, 23, 101. 4 F. Chimenti, S. Vomero, R. Giuliano, and M. Artico, Farmaco, Ed. Sci., 1977, 32, 339. 5 P. W. W. Hunter and G. A. Webb, Tetrahedron, 1973, 29, 147. 6 E. Breuer, in 'The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives,' ed. S. Patai, Wiley, Chichester, 1982, Suppl. F, Part 1, (a)p. 499; (b) p. 508. 7 M. C. Aversa, G. Cum, and N. Uccella, Chem. Comrnun., 1971, 156. 8 A. Camerman and N. Camerman, J. Am. Chem. Soc., 1972,94,268;G. Gilli, V. Bertolasi, M. Sacerdoti, and P. A. Borea, Acta Crystalfogr., Ser. B, 1978, 34, 2826. 9 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, 'MULTAN 80, System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data,' Universities of York and Louvain, 1980. 10 G. M. Sheldrick, 'SHELX-76, Program for Crystal Structure Determinations,' University of Cambridge, 1976. 11 M. Nardelli, Comput. Chem., 1983, 7, 95. 12 D. T. Crorner and J. B. Mann, Acfa Crystallogr., Ser. A, 1968,24,321. 13 R. F. Stewart, J. Chem. Phys., 1970, 53, 3175. Received 28th October 1985; Paper 511874
机译:J. CHEM. soc. PERKIN TRANS. 11 1986 5,6-二氢-I -羟基-55二甲基-1-苯基-3-苯基氨基-l H-吡咯并[l,2-a] 11.51 苯并二氮卓-2(4H)-酮的形成和X射线晶体结构 Maria C. Aversa.”Placido Giannetto和Alida Ferlazzo Dipartimento di Chimica organica e biologica,墨西拿大学,Piazza S. Pugliatti,98100墨西拿,意大利 Giuseppe Bruno Dipartimento di Chimica inorganica e Struttura molecolare, Universita di Messina, Piazza S. Pugliatti, 98100 墨西拿, 意大利 2,3-二氢-2,2,4-三甲基-lH-l,5-苯并二氮杂卓 (1) 与 (Z)-N-(苯甲酰基-甲基 1ene)苯胺 N-氧化物在室温下在无水苯中的反应得到 5,6-二氢-l-羟基-5,5-二甲基-1-苯基-3-苯基氨基-L H-吡咯并[1,2-a][1,5]苯并二甲苯并吡喃-2(4H)-酮(2),伴有几种副产物。通过X射线晶体学分析确定了化合物(2)的结构,这是四氢吡咯并[l,2-a][1,5]苯并二氮卓衍生物的第一个实例。提出了其形成的机制。许多带有进一步缩合杂环核的苯二氮卓类衍生物具有药理学意义。在寻找新的苯二氮卓类药物时,杂环与七环环融合,我们研究了亚硝基对2,3-二氢-1 H-1,5-苯并二氮卓衍生物的反应性。本文报道了主要产物与过量(2)-N-(苯甲酰甲基1烯)苯胺N-氧化物反应中的分离,其鉴定为5,6-二氢-1-羟基-5,5-二甲基-1-苯基-3-苯基氨基-1,H-吡咯并[1,2-a][,5,苯并二氮杂卓-2(4H)-酮(2)(纯产物的收率不超过20%)。四氢吡咯-[1,2-a][1,SJ苯二氮卓衍生物显然以前没有制备过。然而,4H-吡咯并[ 1,2-a][ 1,s)-苯并二氮杂卓-5(6H)-酮由l-(邻乙酰氨基苯基)-2-二甲氨基甲基吡咯-作用甲硫化物与钾~亚化物反应以低产率形成~苯二氮卓类苯(1)在室温下氮气下用过量的硝基处理。蒸去溶剂,对反应混合物进行重复柱层色谱。主产物(2)C2,H,,N302,为黄色棱柱,m.p.134-136“C(由甲醇制成)。i.r.谱图(NUJO~mull)表明存在与不饱和体系(vmaX.1657 cm-')偶联的羰基,并可能存在氨基和羟基(3 250和3 380 cm-*)。'H n.m.r.谱图(CD,OD)显示AB系统(6,2.86,6,2.54,JAB -12.0 Hz),只有两个甲基信号(1.38和1.32处的两个单线态),在起始材料(I)中双甲基的范围内。“AB系统可归因于亚甲基质子,亚甲基质子在双环产物(1)中作为单线态共振,并在三环衍生物中变得磁不等价。”结构(2)是通过X射线分析明确确定的(见下文)。(2)的形成,通过N(11)孤对电子向O(19)的扩展离域而稳定(原子标记见图),可以合理化如下。首先,硝基作为氧供体'“朝向苯并二氮卓 (I),其中 5-氧化物 (3) 与不变的硝基发生偶极偶极相互作用 6b,产生可用的 inter-t 补充数据(SUP 56596,4 页):键角、温度因子、氢坐标的完整列表。有关补充出版物的详细信息,请参阅作者须知,J. Chem. Soc.,Perkin Trans. 2,1986,第 1 期。介导三环二恶二嗪 (4)(未分离)。(4)的互变异构体的分子内重排提供了(9,其在六元杂环中含有-C(OH)Ph-CO-部分:这种建议的重排[(4)至(5)]部分让人想起在同一硝基与烯丙烯或乙烯酮二聚体的反应中观察到的重排.3“然后发生环收缩,涉及角甲基,产生中间体(6)。最终产物(2)由(6)通过脱水形成,脱水遵循苯基羟基从C(2)迁移到C(3)。表 1.分数原子坐标 ( x lo4),带 e.s.d.括号内最小有效数字中的s,用于化合物 (2) X Y Z 1453(9) 1 128(5) 6 277(6) 102( 11) 742(5) 5 267(6) -1 618(9) 1 176(5) 5 289(6) -1 442(9) 1781(5) 6 193(6) -2 847( 10) 2 398(5) 6 588(7) -2 530(10) 3 226(5) 5 919(7) 555(7) 3 247(4) 7 153(5) 1358(7) 3901(4) 7 841(5) 2 577(7) 3 757(4) 8 913(5) 2 992(7) 2 959(4) 9 295(5) 2 189(7) 2 304(4) 8 607(5) 97W7) 2 448(4) 7 536(5) 2 OlO(6) 518(5) 7 288(6) 3 841(6) 205(5) 7 361(6) 4 297(6) -408(5) 8 264(6) 2 923(6) -709(5) 9 093(6) 1093(6) -396(5)9 019(6) 636(6) 217(5) 8 117(6) -3 294(6) 1073(5) 3 177(5) -5 016(6) 933(5) 2 522(5) -5 149(6) 1 002(5) 1 158(5) -3 562(6) 1212(5) 450(5) -1 841(6) 1 353(5) 1 106(5) -1 707(6) 1 284(5) 2 469(5)-3 118(12) 3 196(6) 4 520(8) -3 63Q12) 3 873(6) 6664(9) 1 855(15) 2 952(8) 2 934(9) -490(8) 3 402(5) 5 992(6) 264(8) 1787(0) 6 817(5) -3 231(9) 1 oOo(5) 4 501(6) 3 058(7) 1 454(4) 5 704(5) 569(7) 166(5) 4 585(5) 1770(8) 2 615(5) 4 164(5) 1534 J.CHEM. SOC. PERKIN TRANS.II 1986 Me HO BzCH =N(O)Ph ______) Me (1 ;n = 0) (3;n = 1) H OH Bz ,Ph Ph??Ph$)$ph 表 3.化合物 (2) 的选定键角 (“),e.s.d.s 在 /Ph 括号内 0 C(l)-C(2)-C(3) 108.0(6) C( 1 )-C(2)-0( 19) 12 1.9( 7) HO N-(-Me ”O N C(3)-C(2)-0(19) 130.1(6) C(2)-C(3)-C(3a) 108.3(6)/ / C(2)-C(3)-N(20) 125.2(6) C(3a)-C( 3)-N(20) 126.5(6) C(3)-C(3a)-N(11) 113.0(6) C(3)-C(3a)-C(4) 129.2(6) C(4)-C(3a)-N( 11) 117.8(5) C(3a)-C(4)-C(5) 1 12.0(6) C(4)-C(5W(27) 1 1 1.0(7) C(4)-C( 5)-C(28) 108.0(6) C(4)-C(5tN(6) 107.7(6) C(27)-C(5)-C(28) 11 1.5(7) C(27)-C(5)-N(6) 107.9(6) C(28)-C(5)-N(6) 1 10.5(6) Q C(5)-N(6)-C(6a) 120.2(5) C( 10a)-C(6a)-N(6) 120.6(5) C(6a)-C(lOa)-N(ll) 120.8(4) C(3a)-N(ll)-C(lOa) 123.9(4) C( 1 )-N(11 )-C(3a) 109.2(4) C(1)-N(11)-C( 10a)124.1(3) N(ll)-C(1)-0(12) 110.6(6) C(2)-C(l)-N(ll) 101.5(5) C(2)-CUW(13) 110.0(6) C(2)-C(1)-0(12) 112.3(5) C( 13)4( 1 )-0(12) 1 10.1(5) C(3)-N(20)-C(21) 123.8(6) 表4.化合物(Z)的扭转角(“), 括号内为 e.s.d.s: C( 1 )-N( 1 l)-C( lOa)-C( 10) -51.3(8) C(3)-N(20)4(21)-C(22) -175.8(6) C(3a)-C(3)-N(20)4(21) 114.9(9) C(3a)-C(4)-C(5)4(27) 73.6( 8) C(3a)-C(4)-C(5)-C(28) -163.8(6) C(3a)-N( 1IF( l)-C( 13) -1 18.5(6) C(3aFN(1 1)-C(lW(12) 1 18.2(6)C(3a)-N(1 l)-C(lOa)-C(6a) -34.1(8) C C~l~a)-C(6a)-N(6)-C(5) 72.3(8) N(ll)-C(l)-C(13)-c(14) -137.9(6) N( 1 1 )-C(3a)-C(4)-C(5) 82.2(8) 粗图的广泛色谱分离。(2)的立体图与反应混合物中使用的原子符号允许与(2)一起分离小表;氢原子的数目与数量不变的原子相同 (1) 和几个副产物,都表明它们是附着的,除非另有说明,只是其 N.M.R.光谱中的芳香峰。化合物的X射线晶体结构(2).-带有原子标记的分子的一般视图如图所示。原子坐标及其估计标准表2。化合物 (2) 的键长 (A),带 e.s.d.s中偏差最小的见表1。表 2-4 给出了键距和括号中的选定键和有效数字扭转角。分子 (2) 具有 1,5-苯并二氮卓系统,其 a C( 1 )-cm 1.525(10) C(l)-C(13) 1.482(10) 边缘与吡咯核融合。分子C(lkN(11) 1.4&y8) C( 1 )-O( 12) 1.398(9)堆积主要是由于范德华相互作用和C(2)-C(3) 1.41 2( 10) C(2)-0(19) 1.223(10)分子间氢键,涉及O(12)、O(19)、N(20)、C(3)-c(3a)、1.357(10)、C(3、jN(20)、1.410(9)和N(6)(表5)。还有两个分子内氢C(3a)-c(4)1.482(11)C(3a)-N(11)1.352(8)键,涉及一个结晶甲醇分子C(4l-W),1.538(11),C(5)-C(27),1.476(11)[0(29)N(6),2.802,0(29),9 O(12),2.616 A]。C(5)-C(28) 1.530( 12) C(5)-N(6) 1.475(9)C(6a)-C( 1Oa) 1.395(9) C(6a)-N(6) 1.404(8) 七元环具有舟构象,可以 C(l0a)-N(l1) 1.395(7) C(21)-N(20) 1.355(8) 相对于最小二乘平面通过 C-C(芳烃) 1.395 C(30)-0(29) 1.372(11) 电熔苯环 (A): N(6) 和 N( 11) 从该平面的位移分别为 0.155 和 0.074 A,而 C(3a)、C(4) 和 J.CHEM. SOC. PERKIN TRANS. II 1986 表 5。化合物的氢键 (2) A-H * * D A -D(A) A-H - - -D(“) O(12)-H( 12) -O(29)i 2.62(1 ) 165.3(4) 0(29)-H(29).-N(6)i 2.80(1) 166.0(4) N(20)-H(20) -O(12)ii 3.02(1) 169.0(5) N(6)-H(6) -O(19)iii 2.95(1) 168.3(4) 对称代码:(i) x、y、z;(二) x -1, y, z;(iii) -x, y + 4, --z + 1.C(5) 分别偏离平面 -0.48、-1.53 和 -0.94 A。五元环是平面的,O(19) 和 N(20) 是平面外的 0.014 和 -0.024 A。芳香环 A、B 和 C 与包含吡咯核的平面的角度分别为 45.7、92.5 和 117.4 英寸。C(10a)-N( 1 1) 和 C(6a)-N(6) 键距 [分别为 1.395(7) 和 1.404(8) A] 与相关化合物的相应值一致。 虽然 N( 1 1) 显示四面体而不是三角形构型,在平面 C(1)-C(3a>C( lOa) 之外为 -0.135 A,但 N( 1 l)-C(3a)-C(3)-C(2) 部分中键长的修改表明电子离域扩展系统。其他键长是人们对这种分子的期望。实验 MP 是用 Kofler 热板装置确定的。使用 Perkin-Elmer 225 分光光度计对 Nujoi mulls 采集 1.r. 光谱,并使用瓦里安 EM 360 A 仪器(内标 SiMe)测定 CDCl 或 CD、OD 中溶液的 'H n.m.r.光谱。在硅胶片(Stratocrom SIF Carlo Erba)和Merck 60 PF254硅胶板上进行T.1.c.,用乙醚-乙酸乙酯(95:5)显影,并在Riedel-de Haen硅胶S(0.063-4.2 mm;70-230目ASTM)上进行柱层析。将5,6-二氢-1-羟基-5,5-二甲基-1-苯基-3-苯基-氨基-1 H-吡咯并[ 1,2-a][ 1,5)苯并二氮杂卓-2(4H)-酮 (2).-苯二氮卓类药物'(1)(1.9 g,10 mmol)和(Z)-N-(苯甲酰基-甲基1烯)苯胺N-氧化物3u(2.7g,1.2 mmol)在室温下在氮气下避光搅拌24 h。 将棕色残渣用轻石油乙醚(1:l)进行柱层析,然后用100%乙醚进行柱层析,得到少量的(1)和若干副产物。用乙醚-乙酸乙酯(95 :5)最终洗脱,得到pyrrolobenzod@zepinone(2)(1.0 g),通过制备t.1.c进一步纯化。(找到: C, 76.0;H,6.1;N,10.5。C2,H25N,02 需要 C, 75.9;H,6.1;N,10.2%);m.p. 134-136 “C(来自甲醇);Vmax.3 380, 3 250, 1 657, 1 448, and 1 357 cm-';G(CD,OD) 1.32 和 1.38(各 3 H、s、5-Me)、2.54 和 2.86(各 1 H、ABq、J -12 Hz、4-Hz)和 6.5-8.0(14 H、m、ArH)。吡咯苯并二氮卓酮的晶体结构分析 (2).-晶体数据。C2,HZ9N3O3,A4 = 443.5。单斜晶系, a = 7.087(1), b = 16.387(3), c = 10.193(2) A, = 91.44(1)“, U = 1 183.5(4) A3, 2 = 2, D, = 1.24 g cm-', F(OO0) = 472.空间群 P2,,p = 0.76 cm-' 对于 Mo-K,辐射,h = 0.710 69 A. 通过甲醇溶液的缓慢蒸发获得适合 X 射线分析的晶体。尺寸为 0.2 x 0.2 x 0 的晶体。使用Siemens-Stoe四圆衍射仪在23“C下测量4 mm。通过对 28 3c(I)的反射被用于结构改进。进行了洛伦兹和偏振校正,但没有进行吸收校正。结构确定。用 MULTAN 80 ~ystem;~ 直接方法求解了该结构,以下计算主要由 SHELX-76“ 和 PARST” 系统进行。所有的H原子都是从差分傅里叶图中找到的。然而,实际上只有参与氢键的 H 原子被精炼;其他人被分配了计算位置(CH距离1.08 A)。采用全矩阵最小二乘法对结构进行细化;对除芳环原子以外的所有非氢原子都引入了各向异性温度因子。这些被细化为刚性群,并使用群细化程序将其限制在它们的法向几何形状(D6,,symmetry,C-C 1.395 A)内。每个环被分配了六个可变的位置参数,每个环碳原子被分配了一个单独的各向同性热参数。最终R值为[CIFoI -IFJ/ClF,,I = 0.06,R为[Cw(lFoI -IFc1)'/Cw(F01']*= 0.064。上一个细化周期中使用的加权方案为 w = 3.251/[a2(F0) + O.OOOO1 FO2]。对可能的对映异构体的细化显示R值没有差异,并且无法分配绝对构型。最终差值图峰在0.3-0.5 e A-3范围内。非氢原子的散射因子取自 Cromer 和 Mann 的散射因子,H 的散射因子取自 Stewart。致谢 我们感谢部长0 della Pubblica Istruzione(罗马)的财政支持。参考文献 1 (a)M. C. Aversa, P. Giannetto, A. Ferlazzo, and G. Romeo, J. Chem. Soc., Perkin Trans.我,1982,2701;(6) M. C. Aversa 和 P. Giannetto, J. Chem.Soc., Perkin Trans. 2,1984,8 1;(c)M. C. Aversa, A. Ferlazzo, P. Giannetto, and F. H. Kohnke, Synthesis, 1986, 230;(d) M.C.Aversa、A.Ferlazzo、P.Giannetto、F.H.Kohnke、A.M.Z.Slawin和D.J.Williams、J.Heterocycf。Chem.,在媒体上。2 W. Ried 和 P. Stahlofen,Chem. Ber.,1957,90,815。3 (a) M. C. Aversa, G.Cum, I. Stagno d'Alcontres, and N. Uccella, J. Chem. SOC.,Perkin Trans.我,1972,222;(b)Y. Inouye, K. Takaya, 和 H. Kakisawa, Magn.共鸣。化学, 1985, 23, 101.4 F. Chimenti, S. Vomero, R. Giuliano, and M. Artico, Farmaco, ed. Sci., 1977, 32, 339.5 P.W.W.亨特和G.A.韦伯,四面体,1973,29,147。6 E. Breuer, in 'The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives', ed. S. Patai, Wiley, Chichester, 1982, Suppl. F, Part 1, (a)p. 499;(b) 第508页。7 M. C. Aversa, G. Cum, and N. uccella, Chem. Comrnun., 1971, 156.8 A. Camerman 和 N. Camerman, J. Am. Chem. Soc., 1972,94,268;G. Gilli, V. Bertolasi, M. Sacerdoti, and P. A. Borea, Acta Crystalfogr., Ser. B, 1978, 34, 2826.9 P. Main、S. J. Fiske、S. E. Hull、L. Lessinger、G. Germain、J. P. Declercq 和 M. M. Woolfson,“MULTAN 80,用于从 X 射线衍射数据自动求解晶体结构的计算机程序系统”,约克大学和鲁汶大学,1980 年。10 G. M. Sheldrick,“SHELX-76,晶体结构测定程序”,剑桥大学,1976 年。11 M. Nardelli,计算机。化学, 1983, 7, 95.12 D. T. Crorner 和 J. B. Mann, Acfa Crystallogr., Ser. A, 1968,24,321.13 R. F. Stewart, J. Chem. Phys., 1970, 53, 3175.收稿日期: 1985-10-28;纸511874

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号