...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >AromaticC-nitroso compounds. Thermodynamics and kinetics of the equilibrium between 2,6-dimethylnitrosobenzene and itstrans-dimer
【24h】

AromaticC-nitroso compounds. Thermodynamics and kinetics of the equilibrium between 2,6-dimethylnitrosobenzene and itstrans-dimer

机译:芳香族C-亚硝基化合物。2,6-二甲基亚硝基苯与其反式二聚体平衡的热力学和动力学

获取原文
           

摘要

J.C.S. Perkin I1 Aromatic C-Mitroso Compounds. Thermodynamics and Kinetics of the EquiIibr iu m between 2,6-Dimet hyln itrosobenzene and its trans-Dimer By Michel Azoulay," Richard Lippman, and Gunnar Wettermark, Department of Physical Chemistry, The Royal Institute of Technology S-1 00 44,Stockholm 70, Sweden Using i.r., n.m.r. and visible spectrophotometry, the system 2,6-dimethylnitrosobenzene (D MNB) 2,2',6,6'-tetramethylazodioxybenzene (TMAB) was investigated. In the solid state, the stable species is trans-TMAB. In acetonitrile solution, the following thermodynamic and activation parameters were derived for the reaction trans-TMAB q2z 2 DMNB AH" -54.0 kJ mol-l, ASo -1 29 J K-l mol-I, AHX84.5 kJ mol-l, and AS1 -6 J K-mol-l. There was no evidence for the existence of cis-TMAB in solution, THE dimerization-dissociation reaction in nitroso-taining these species can yield the pure cis-isomer in the azodioxy systems t has been extensively discussed in the form of single crystals, but conversion of the solid cis-literature.l- However, thermodynamic and kinetic parameters related to this reaction have been deter-mined only in a few cases.2.10,11,18,21-24 This is apparently the result of the unfavourable position of the equilibrium prevailing for a great nurnbcr of nitroso-azodioxy systems.For instance, in the aliphatic class the equilibrium lies far in favour of the dimeric species with the trans-configuration.21 For aromatic nitroso- azotlioxy-systems, the equilibrium may be substantially shifted towards the nitroso-form depending on the type of substitution on the aromatic ring^.^^-^' ortlzo-Substitution is known to affect the equilibrium in favour of tlie azodioxy-form.' Thus, the equilibrium constant for the dissociation-dimerization is ca. lo2, 1, and lop2 at ambient temperatures for nitrosobenzene, o-nitroso- toluene, and nitrosomesitylene. Tt is noteworthy that cis-trans-isomerization in aromatic nitroso-azodioxy-systems has been observed only in a few systems, in particular, in o-nitrosotoluene. azodroxy-compound 2 R-N=O 2M monomer nitroso -compound FIGURE Reaction scheme for the dissociation and1 cis-trans-isornerization of azodioxy-compounds The beliaviour of this system has been recently investi- gated in detail both in the solid state and in solu-tio11.18.28.29 (i) The azodioxy-species undergo cis-tram-isomeriz-ation in solution analogously to the aliphatic species (see Figure 1).(ii) Slow evaporation of solutions con- TXitroso and azodioxy refer to the C-nitroso rind climcric nitroso species, respectively, thronghout this papcr. compound leading to the trarts occurs readily at room temperature. (iii) Internal rotation about the Ar-N bond is sterically hindered in the cis-form; whereas tliis type of sterical hindrance is likely to be absent in the tram-configuration. (iv) The cis-dimer is more stable energetically (i.e. by AH") than the trans-dimer but entropically less favoured. (v) The rate of the dis-sociation of the dimer is considerably faster as coinpared to aliphatic systems.In an attempt to test the extendibility of these experi- mental findings to other closely related nitroso-azodioxy- systems, we have investigated the behaviour of 2,6-dimethylnitrosobenzene (DMBA) +2,2',6,6'-tetra-mcthylazodioxybenzene (TMAB). EXPERIMENTAL Materials.-The solvents CH,CN,, ClICI,, and CL),CN were spectroscopic grade and used without further purific- ation (Ciba-Geigy; 99.5 ; isotopic purity). Sawz@es.-Dimeric 2,6-dimethylnitrosobenzenewas pre-pared essentially according to The reaction mixture was mechanically stirred at -2 to 5 "C for 6 h at pH 6.8-7.0. An adjustment of pH was made with acetic acid and I,CO,. The nitroso-dimer precipitated from the mixture and was filtered, washed with a little water, 10 HCI, and cold methanol.Recrystallization three times from ethanol- light petroleum produced small flakes. Directly before spectroscopic measurements further purification was to obtain by bulb-to-bulb, high vacuum sublimation at 140 "C. Upon recrystallization from ethanol, the trans-dimer was obtained and identified by i.r. In one instance, a slow crystallization experiment lasting several days at ambient temperature resulted in 3 nim flakes which appeared predominantly to consist of the cis-isomer. However, attempts to reproduce this selective crystallization were unsuccessful. At higher temperatures osidation oi the nitroso-compound caused the solutions to turn yellow. This oxidation was inhibited by flushing the samples with argon.The m.p. of tlie brans-isomer was 133.5-134 "C, RF (CHC1,) 0.704. I.r. nleasuret7ze.lzts.-l.r. spectra were recorded using a Perkin-Elmer 180 or a Perkin-Elmer 130 spectrometer. The solid samples were examined at rooni temperature in the range 1 700-400 cni-1 using the IiBr disc technique (pressure 7.6 kg cn-2; 13 mm, concentration 16 nig per C$ 300 mg KHr). Wave numbers are estimated to be accurate to A2 cm-l. The presence of cis-and trans-isomers in the solid state was indicated by well established characteristic peaks at for1 400 and 050 cm-l for the cis-form and at 1 279 c~n-~ the tvans-form. For i.r. studies in solution of the dimeric species, 0.05~solutions were examined at room temperature where the dimer-monomer equilibrium is shifted far to the left in favour of the dimer. For studies of solutions contain- ing predominantly the mononicr, diluted solutions (5 x 10-4~)have been used.Here, i.r. spectra were recorded on a IXgilab Fourier i.r. spectrometer (number of scans 100). In all solution studies, the cell path lengths were 1 nim. Visible Spectra.-All tlie visibie spectrophotometric measurements were carried out on a Shimadzu MpS-5OL double-beam instrument. At temperatures below ambierit, the spectrophotorneter was purged contirruvusly with nitrogen. The cell holders were thermostatted by circnlat-ing etlmnd from a constant temperature bath. The teni-perature uf the solutions was measured continuously by means of a copper-constantan therinocouple conmcted to a digital voltmeter.Quantiktive evaluation of opticamp;l densities of the specific band of the monomer in the wave-length region 400-800 iim were made in the equilibration stndies of the dimer-monomer equilibrium. The concen- tration range was 5 x IW3-ll x lo-". Optical cells of path length 1, 2, 5, and 10 cni were used. Samples were prepared immediately prior to the experiments by weighing TMBA together with the solvent (ca. 50 or 100 nil) in E-flasks. The equilibration measurements were carried out with 1cm cells (ca. 3 nil) with the addition of the azodioxy- compound (20 mg) in a pre-thermostatted cell which was shaken vigorously. Dilution experiments were carried out using an Oxford rapid-dispensing syringe equipped with polyethylene tips of 10 ml.The agitation following the injection was sufficiently vigorous in all experiments to yield homogeneous solutions. In all equilibration measure- ments the absorption of the monomer was followed. N.m.r. Spectra.-lH Fourier transiorni n.m.r. spectra were taken on a Bruker IVY-200 spectrometer operating at 200 MHz in tlie deuterium-lock mode and equipped with its variable temperature unit. In most experiments accumulation of 4 f.i.d. was sufficient. The spectra of the methyl protons were recorded with a frequency scale factor of 0.021 Hz cm-l. Temperature nieasureinents were made b;~means of a copper-constantan thermocouple before and after each experiment.The average of two temperatures was taken ; the accuracy is estimated at ca. f1 "C. RESULTS In the solid state, TMBA showed N=O stretching at 1472, 1 258, and 1 250 cin-l and C-n' stretching at 777 cm-l. These bands corresponded to typical trans-spectra of other nitroso-aromatic dimers. There was no indication of any of the characteristic cis-bands which are known to exist for this class of compounds (e.g. at 1 400 and 950 cm-l). Also in solution, no cis-bands were observed, but there were strong trans-bands in concentrated solutions. As expected, there is a great similarity between these spectra and those observed by Luttke for trans-dimeric nitro~omesitylene.~0 The n.m.r. spectrum of the methyl protons of a solution of TMAB (ca.0.05~)at ambient temperature in the shift range 6 1.9-2.7, consists of two peaks labelled M and T (Snr2.620, aT2.426 at 20 "C). Signal T decreases with increas- ing temperature, whereas the M signal increases. Further-more, the ratio of the intensity of the monomer to the inten- sity of signal T increases with increasing temperature as expected for signals arising from a monomer-dimer equili-brium. Only one resonance, T, was obtained when the solid trans-dimer (identified by i.r.) was dissolved in CDCl, at -20 "C. At this temperature the monomer-dimer equilibrium is ' frozen '. On warming the solution, peak M appeared. Thus, M and T are attributed to the mono-meric and trans-species, respectively. N.m.r. Deteamp;nination of Thernzodynaiwic and h'inetic Parameters .-For computation of thernmdynamic para-meters from n.m .r.equilibrium data, the methyl proton + A' FIGURE Spectrophotometric measurements of the equilibrium 2 dimer +monomer of 2,2',6,6'-tetramethylazodioxybenzcnc in acetonitrile solution spectra of 0.036 2~ (Camp;lovalue) CD3CN solutions of DMNB were investigated over the temperature range -10.0 to +30 "C at which no disproportionation of the compound occurs. The equilibrium constants K were evaluated from the given integrals li of the monomeric and dimeric signals M and T, according to equation (1) where r = IM/IT and K = ~CM"Y~/(V+ l) Cr/r"= total concentration expressed in monomer units; CM" = Cx + 2CI,, CM and CDbeing the monomer and dimer concentration, respectively.Linear plots of In K versus 1/T yield the thermodynamic parameters AH" and AS". These plots are shown in Figure 3(a). No broadening of the peaks were observed over this temperature range. Thermodynamic parameters are presented in Table 1. Visible Spectro~hobonze~r-~.-Thedimer-monomer equili-brium was investigated spectrophotornetrically using the specific visible absorption band of the monomer. The Dz2M global equilibrium constant for the overall dissociation (2) is related to the global degree of dissociation 01 by equ- 258 ation (3) where a = CM/CM" (0 6 cc 1) is the ratio of the monomer concentration to the total concentration at equili-brium expressed in monomer units. K = 2a2CMo/(l-a) (3) Using equation (3) together with the Beer-lambert law, the linear relationship (4) is obtained between A (ICB~")-land (a1 bsol; -5.0 -7.0t -9-0-8-oL 7 -10.0h u*--11.0-1-t -12.0 's-13.0t 3FIGURE (a) Equilibrium for the reaction T 2M in acetonitrile solution as determined by visible spectrophoto- metry (open circles) and by 1i.ni.r.(filled circles). (b) Eyringplot for the reaction T ==amp;2M in acetonitrile solution A2(22CM0)-1 where A == absorbance, Z = path length, and CM = absorption coefficient of the monomer. Results (4) obtained at three temperatures are shown in Figure 2. From the intercept and the slope, values of A' and EM are found. The thermodynamic parameters obtained from this data are in Table 1 together with those obtained by 11.m .r. Equilibration of the trans-dimer was made at five temper- TABLE1 Thermodynamic parameters for the DMBA +TMAB equilibrium Method kJ mol-l AHa/ J K-l mol-l AS0/ Visible N.m.r. 54.0 f50/:,51.5 amp; 8 129 7 123h 13 atures by measuring the light absorbance of the monomer at 775 nm. In order to obtain sufficiently large absorption changes, fairly concentrated solutions had to be used (as expected from the equilibrium data). On the other hand, J.C.S. Perkin I1 the low solubility of the azodioxy-compound in CH,CN (as in most polar solvents), limited severely the concen-tration range which could be investigated. Thus, these two experimental difficulties did not allow the concentration TABLE2 Activation parameters for the DMBA +TMAB equilibrium AH$/ AS/kJ mol-l J K-l mol-' 85.4 amp; 2.0 -6 f3 dependence of the decay times to be determined. Equili-bration experiments using dilution gave similar results.The rate constants Kf displayed in the Eyring plot in Figure 3(b) have been evaluated from least-square fitting of the decay curves equation (5)where A = absorbance at t = co (2A, + KEd)(amp; -4) __-(243 + KENwLJ + 2AmA,)exp--Kft(KEMZ 4-4Am)/(2Kc~Z)(5) and A, = absorbance at a given time t. The activation parameters are collected in Table 2. DISCUSSION In contrast to the mono-ortho-substituted case (i.e. o-nitrosotoluene) the present system exhibits in solution (i) an equilibrium lying far towards the dimer, (ii) slow kinetics of dissociation to the monomer, and (iii) no cis-trans-isomerization of the azodioxy-derivative.An explanation of these findings should be sought in the electronic and steric effects operating in the monomeric and dimeric species. As mentioned earlier in the introduction, small electronic and steric effects brought about by minor structural variations may change drastically the relative amounts of components present in nitroso-azodioxy systems. Geometrical parameters recently reported in the literature show that the bond lengths for aromatic and aliphatic azodioxy-derivatives closely approach each other.31 This is an indication that the electronic delocalization in aromatic azodioxy- species is restricted similarly within the ONNO bridge. Furthermore, low temperature n.m. r. studies indicate free rotation around the Ar-NO bond in the trans-o,o'- azodioxytoluene species.29 However, in the cis-azo-dioxy-molecule there is a barrier of ca. 48 kJ mol-l which has been attributed to steric hindrance between the aryl rings. The basis for the existence of the trans- species in this system is in fact directly related to steric hindrance in the cis-form since the cis-form is energetic-ally favoured: AH" ca. 10 kJ mol-l whereas ASo ca. 40 J K-l mol-l. The presence of two methyl groups in the ortho-position should further enhance the repulsion in the cis-isomers as indicated by the lopsided equilibrium ratios, ca. 1 :4,between the two cis-rotamers of azodioxy- toluene and make the trans-form still more favourable for TMAB.This would explain why the cis-form is not present in observable quantities. Increased ortho-substitution should also to a greater extent decrease the stability of the monomer in relation to the trans-dimer since it hampers conjugation in the monomer whereas conjugation between the aromatic rings and the ONNO moiety is almost non-existent in azodioxy-compounds (cf. n.m.r. chemical shifts for o-methyl protons for various speGies 32933). A decreased equilibrium constant for the dissociation-dimerization is thus expected in the series nitrosobenzene, o-nitroso- toluene, and 2,6-dimethylnitrosobenzene, which also is experimentally observed. This suggestion is consistent with reported literature parameters in Table 3.TABLE3 Thermodynamic parameters for nitroso +azodioxy equilibria. AH"/kJ A.S"/JCompound mol-1 K-1 mol-l Solvent Ref. 2-Methyl-45.6 163 Acetonitrile 18 nitrosobenzene 2,6-Dimethyl-54.0 120 Acetonitrile This nitrosobenzene work 2,4,6-Trimethyl-50.6 157 Benzene 14 nitrosobenzene 2,3,5,6-Tetramethyl-61.1 130 Benzene 32 nitrosobenzene 2,3,4,5,6-Pentamethyl-50.2 100 Benzene 32 nitrosobenzene Our results indicate a correlation between kinetic and thermodynamic data, AG (ca. AHf) paralleling AH". This appears to apply both to substitution as well as to solvent effects. The transition state has been proposed to be a twisted molecule around a stretched N-N bond.12 Resonance effects in the transition state could therefore be similar to those operating in the monomer.0/222 Received, 7th Febvuavy, 19801 REFERENCES 11.L. Hammick. J. Cliewi. SOC., 1931, 3105. a D. L. Hammick, R. G. A. New, and L. E. Suttun, J. Clioti. Soc., 1932, 742. D. L. Hammick, R. G. A. New, and R. B. Williams, J. Clicm. SOC.,1934, 29. J. W. Smith, J. Chem. SOC.,1957, 1124. J. W. Linnett and R. M. Rosenberg, Tetvahedropi, 1964, 20, 52. J. F. Larcher and J. W. Linnett, J. Chcrn. SOC.(A), lW7, 1928. B. G. Gowenlock and I. A. Kedish, Z. Plrvs. Chriii. (l'vctiili-fzrvt), 1962, 31, 169. B. G. Gowenlock and J. Kay, J. Clzcni. SOC., 1962, 22W. L. Batt and B. G. Gowenlock, J. Chem. Soc., 1960, 376. lo L. Hatt, B.G. Gowenlock, and J. Trotman, J. Chenz. Soc.. 1960, 2222. l1 L. Batt and B. G. Gowenlock, Tra~s.Favuda-v SOC.,l!JtiO, 56, 1022. l2 R. Hoffmann, R. Gleiter, and F. R. Mallory, J. Anzer. CEICII?. SOC.,1970, 92, 1460. l3 W. Luttke, 2.Electrochem., 1957, 61,302. l4 W. v. Keussler and W. Luttke, 2.Electrochant., lY5!1, 63, ti 14. l5 B. G. Gowenlock and W. Luttke, Quart. Rev., 1958, 12,321. l6 P. A. S. Smith, ' The Chemistry of Open ('hain 0rg.iiiicNitrogen Compounds,' Benjamin, New York, 1966, vol. 1I, ch. 1:;. l7 J. ,H. Boyer in ' The Chemistry of the Nitro an(l Kitro-o Groups, ed. H. Feuer, Wiley, New York, 1968, I'art I, 13. 2 15. l8 M. Azoulay and G. Wettermark, ?'etrahedro?z, 1078, 34, 25!)1. lg J. P. Snyder, M. L. Heyman, and I.N.Sucin, J. Oig. C*~PJJ/, 1975, 40, 1395. 2o I;.D. Greene and K. E. Gilbert, J. Urg. Chem., 1!)75, 40, 140!1. 21 Th. A. J. W. Wayer and Th. J. De Boer, 11'ec. 7'vau. clririi 1972, 01,565. 22 J. C. Stowell, J. Org. Chem., 19'71, 86, 3056. 2s G. B. Sergev and I. A. Leenson, Russ. J. Pliys. Cliwi., 1!)7X, 52, 312. 24 A. U. Chaudry and B. G. Gowenlock, J. Cliriir. Soc. (l~'),I!W, 1083. z5 W. J. Mijs, S. E. Hokstra, R. H. Ullman, and JC. 14absol;iiiga. Rec. Trav. chinz., 1958, 77, 740. 2e R. Holmes, R. P. Bayer, L. A. Errede, H. I. Davis, .bsol;. bsol;bsol;' Weisenfeld, P. H. Bergman, and D. L. Nicholas, J. Org. C~PIII., 1965, 30, 3837. 27 R. Holmes, J. Org. Chenz., 1964, 29, 3076. 28 M. Azoulay, B. Symne, and G. Wettermark, Tctraliectvau, 1976, 32, 2961. 29 M. Azoulay, T. Drakenberg, and G. Wettermark, J.C.S. Perkin II, 1979, 199. 30 W. Luttke, ' Habilitationschrift,' Freiburg, 1956. 3l D. A. Dieterich, I. C. Paul, and D. Y.Curtin, J. Amcit. CILL~L. SOC.,1974, 96, 6372. 32 R. Okazaki and N. lnamoto, J. Chenz. SOC. (R),1970, 1583. 33 T. Dobau, T. I. Chihawara, and H. Yoshida, Nztll. Cliw~. SOC.Japan, 1977, 50, 3158.
机译:J.C.S. Perkin I1芳香族C-Mitroso化合物。Thermodynamics and Kinetics of the EquiIibr iu m between 2,6-Dimet hyln itrosobenzene and its trans-Dimer 作者:Michel Azoulay,“Richard Lippman 和 Gunnar Wettermark,皇家理工学院物理化学系 S-1 00 44,Stockholm 70,Sweden 使用 i.r.、n.m.r. 和可见分光光度法研究了 2,6-二甲基亚硝基苯 (D MNB) 2,2',6,6'-四甲基偶氮二氧基苯 (TMAB) 系统。在固态下,稳定的物质是反式TMAB。在乙腈溶液中,反式-TMAB q2z 2 DMNB AH“ -54.0 kJ mol-l、ASo -1 29 J K-l mol-I、AHX84.5 kJ mol-l 和 AS1 -6 J K-mol-l 反应的热力学和活化参数如下。没有证据表明溶液中存在顺式-TMAB,亚硝基物质中的二聚化-解离反应可以在偶氮二氧基体系中产生纯顺式异构体,但固体顺式文献的转化率已得到广泛讨论.l-% 然而,与该反应相关的热力学和动力学参数仅在少数情况下被阻止挖掘.2.10,11,18,21-24 这显然是由于亚硝基偶氮二氧基系统的平衡处于不利地位的结果。例如,在脂肪族类别中,平衡远远有利于具有反构型的二聚体物种。21 对于芳香族亚硝基-偶氮三氧基体系,平衡可以大大向亚硝基形式转变,具体取决于芳香环上的取代类型^.^^-^' 已知 ortlzo-取代会影响平衡,有利于偶氮二氧基形式。因此,在环境温度下,亚硝基苯、邻亚硝基甲苯和亚硝基三甲苯的解离-二聚化平衡常数约为 lo2、1 和 lop2。值得注意的是,芳香族亚硝基偶氮二氧基系统中的顺反异构化仅在少数系统中观察到,特别是在邻亚硝基甲苯中。偶氮苷酸化合物 2 R-N=O 2M 单体 亚硝基化合物 图 偶氮二氧基化合物的解离和 1 顺反异构化的反应方案 最近详细研究了该系统在固态和溶性物质下的效益11.18.28.29 (i) 偶氮二氧基物质在溶液中发生顺式-杂质异构化,类似于脂肪族物质(见图 1)。(ii) 溶液的缓慢蒸发 con- TXitroso 和 偶氮二氧基分别是指 C-亚硝基外皮 climcric 亚硝基物质,而不是本 papcr。导致 TRARTS 的化合物在室温下很容易发生。(iii)围绕Ar-N键的内旋在顺式形式中受到空间阻碍;而 TLIIS 类型的空间位阻在有轨电车配置中可能不存在。(iv) 顺式二聚体在能量上更稳定(即AH“)比反式二聚体,但在熵上不太受欢迎。(v) 与脂肪族系统相比,二聚体的解离速度要快得多。为了测试这些实验结果对其他密切相关的亚硝基偶氮二氧基系统的可扩展性,我们研究了 2,6-二甲基亚硝基苯 (DMBA) +2,2',6,6'-四麦基偶氮二氧基苯 (TMAB) 的行为。实验材料:溶剂CH、CN、ClICI和CL)、CN为光谱级,无需进一步纯化即可使用(汽巴嘉基;99.5%;同位素纯度)。Sawz@es.-二聚体2,6-二甲基亚硝基苯基本上按照以下方法制备:反应混合物在-2-5“C下机械搅拌6小时,pH 6.8-7.0。用乙酸和I<,CO调节pH值。从混合物中析出亚硝基二聚体并过滤,用少许水、10% HCI 和冷甲醇洗涤。从乙醇-轻质石油中重结晶三次产生小片状物。在光谱测量之前,通过灯泡到灯泡在140“C下进行高真空升华,从而获得进一步的纯化。从乙醇重结晶后,获得反式二聚体,并通过 i.r.在一个实例中,在环境温度下持续数天的缓慢结晶实验产生了 3 个纳米片,这些片片似乎主要由顺式异构体组成。然而,重现这种选择性结晶的尝试没有成功。在较高的温度下,亚硝基化合物的氧化作用导致溶液变黄。通过用氩气冲洗样品来抑制这种氧化。麸皮异构体的熔点为133.5-134“C,RF(CHC1,)0.704。I.r. nleasuret7ze.lzts.-l.r.使用 Perkin-Elmer 180 或 Perkin-Elmer 130 光谱仪记录光谱。使用IiBr圆盘技术(压力7.6 kg cn-2;13 mm,浓度16 nig/C$ 300 mg KHr)在1 700-400 cni-1范围内检查固体样品。波数估计精确到 A2 cm-l。顺式和反式异构体在固态中的存在由顺式和反式异构体的特征峰在1 400和050 cm-l处的成熟特征峰表示,在1 279 c~n-~处,在tvans型中。对于二聚体溶液的 i.r. 研究,在室温下检查 0.05~溶液,其中二聚体-单体平衡向左偏左,有利于二聚体。对于主要含有单离子的溶液的研究,使用了稀释溶液(5×10-4~)。在这里,在IXgilab Fourier红外光谱仪上记录了i.r.光谱(扫描次数为100)。在所有溶液研究中,细胞路径长度为 1 nim。可见光谱-所有可见分光光度测量均在岛津MpS-5OL双光束仪器上进行。在低于ambierit的温度下,用氮气彻底吹扫分光光度仪。通过恒温浴循环对电池支架进行恒温。通过连接到数字电压表的铜-康铜-康铜-therinocouple连续测量溶液的十倍倍。在二聚体-单体平衡的平衡状态下,对波长区400-800 iim内单体比带的光学密度进行了定量评估。浓度范围为 5 x IW3-ll x lo-”。使用光程长度为 1、2、5 和 10 cni 的光学单元。在实验前立即通过在电子烧瓶中称量TMBA和溶剂(约50或100无)来制备样品。用1cm电池(约3无)进行平衡测量,并在预恒温电池中加入偶氮二氧基化合物(20mg),该电池剧烈摇晃。使用配备有10ml聚乙烯尖端的Oxford快速分配注射器进行稀释实验,在所有实验中,注射后的搅拌都足够剧烈,以产生均匀的溶液。在所有平衡测量中,都遵循单体的吸收。N.m.r. 光谱-lH 傅里叶超叶 n.m.r. 光谱是在布鲁克 IVY-200 光谱仪上拍摄的,该光谱仪以 200 MHz 的频率运行,处于氘锁定模式,并配备了其可变温度装置。在大多数实验中,积累 4 个 f.i.d. 就足够了。以0.021 Hz cm-l的频率比例因子记录甲基质子的光谱。在每次实验之前和之后,对铜-康铜热电偶进行温度测量b;~均值。取了两个温度的平均值;精度估计为约f1“C.结果 在固态下,TMBA在1472、1 258和1 250 cin-l处显示N=O拉伸,在777 cm-l处显示C-n'拉伸。这些条带对应于其他亚硝基芳香族二聚体的典型反光谱。没有迹象表明这类化合物存在任何已知的特征顺式带(例如在1 400和950 cm-l处)。同样在溶液中,没有观察到顺式条带,但在浓缩溶液中存在很强的反式条带。正如预期的那样,这些光谱与Luttke观察到的反式二聚体硝基~三甲苯的光谱有很大的相似性.~0 TMAB溶液(ca.0.05~)的甲基质子的n.m.r.光谱在环境温度下,在位移范围6 1.9-2.7,由两个标有M和T的峰组成(Snr2.620,aT2.426,20“C)。信号 T 随温度升高而减小,而 M 信号随温度升高而增大。此外,单体强度与信号T强度之比随着温度的升高而增加,这与单体-二聚体平衡产生的信号所预期的那样。当固体反式二聚体(通过i.r.鉴定)溶解在-20“C的CDCl中时,仅获得一个共振T。在这个温度下,单体-二聚体平衡是“冻结的”。加热溶液时,出现峰M。因此,M 和 T 分别归因于单体和跨物种。N.m.r. Thernzodynaiwic 和 h'inetic 参数的 Dete&nination .-为了根据 n.m .r.平衡数据计算热动力学参数,甲基质子 + A' 图 在 0.036 2~ (C&lovalue) DMNB 的 CD3CN 溶液中平衡 2 二聚体 + 单体的分光光度法测量,在 0.036 2~ (C&lovalue) CD3CN 溶液的温度范围内,化合物不会发生歧化。根据等式(1)从单体和二聚体信号M和T的给定积分li计算平衡常数K,其中are = IM/IT和K = ~CM“[Y~/(V+ l)] Cr/r”=以单体单位表示的总浓度;CM“ = Cx + 2CI,, CM 和 CD分别是单体和二聚体的浓度。In K 与 1/T 的线性图得出热力学参数 AH“ 和 AS”。这些图如图3(a)所示。在此温度范围内未观察到峰的展宽。热力学参数见表1。利用单体的特定可见吸收带对可见光谱~hobonze~r-~.-二聚体-单体平衡-brium进行了分光光度研究.总解离的 Dz2M 全局平衡常数 (2) 与全局解离度 01 by equ- 258 ation (3) 有关,其中 a = CM/CM“ (0 6 cc < 1) 是单体浓度与平衡时总浓度的比值,以单体单位表示。K = 2a2CMo/(l-a) (3)利用式(3)结合比尔-朗伯定律,得到A(ICB~“)-土地(a1 \ -5.0 -7.0t -9-0-8-oL 7 -10.0h u*--11.0-1-t -12.0's-13.0t 3图 (a) 通过可见分光光度法(开环)和1i.ni.r.(实心圆圈)。(b) 乙腈溶液A2(22CM0)-1中反应T ==&2M的艾林图,其中A==吸光度,Z=光程长度,CM=单体的吸收系数。在三个温度下获得的结果(4)如图2所示。从截距和斜率中,可以找到 A' 和 EM 的值。从该数据中获得的热力学参数与11.m .r获得的热力学参数一起见表1。反式二聚体的平衡是在五种温度下进行的- 表1 DMBA + TMAB平衡法的热力学参数 kJ mol-l AHa/ J K-l mol-l AS0/ 可见光 N.m.r. 54.0 f50/:,51.5 & 8% 129 7% 123h 13% 通过测量单体在 775 nm 处的吸光度。为了获得足够大的吸收变化,必须使用相当浓缩的溶液(正如平衡数据所预期的那样)。另一方面,J.C.S. Perkin I1偶氮二氧基化合物在CH,CN中的低溶解度(与大多数极性溶剂一样),严重限制了可以研究的浓度范围。因此,这两个实验难点不允许TABLE2激活参数对DMBA+TMAB平衡AH$/AS/kJ mol-l J K-l mol-' 85.4和2.0 -6 f3衰变时间的依赖性得到确定。使用稀释的平衡实验给出了类似的结果。图3(b)中艾宁图中显示的速率常数Kf是通过衰变曲线的最小二乘拟合计算的[等式(5)其中A=吸光度在t = co(2A,+ KEd)(&-4)__-(243 + KENwLJ + 2AmA,)exp[--Kft(KEMZ 4-4Am)/(2Kc~Z)](5)和A,=给定时间t的吸光度]。激活参数收集在表 2 中。讨论 与单邻位取代的情况(即邻亚硝基甲苯)相反,本体系在溶液中表现出 (i) 远离二聚体的平衡,(ii) 与单体解离的缓慢动力学,以及 (iii) 偶氮二氧基衍生物的顺反异构化。这些发现的解释应该在单体和二聚体物种中的电子效应和空间效应中寻求。如前所述,由微小的结构变化引起的小电子效应和空间效应可能会极大地改变亚硝基偶氮二氧基系统中存在的组分的相对量。文献中最近报道的几何参数表明,芳香族和脂肪族偶氮二氧基衍生物的键长彼此接近.31这表明芳香族偶氮二氧基物种的电子离域在ONNO桥内受到类似的限制。此外,低温n.m.r.研究表明,在反式-o,o'-偶氮二氧基甲苯物种中,Ar-NO键周围自由旋转.29然而,在顺式偶氮二氧分子中,存在约48 kJ mol-l的势垒,这归因于芳基环之间的空间位阻。事实上,这个系统中跨物种存在的基础与顺式形式的空间位阻直接相关,因为顺式形式在能量上是有利的:AH“约10 kJ mol-l,而ASo约40 J K-lmol-l。邻位两个甲基的存在应进一步增强顺式异构体的排斥力,如偶氮二氧基甲苯的两个顺式旋转体之间的不平衡平衡比(约1:4)所示,并使反式形式更有利于TMAB。这可以解释为什么顺式形式不以可观察的数量存在。邻位取代的增加也应该在更大程度上降低单体相对于反式二聚体的稳定性,因为它阻碍了单体中的共轭,而芳环和ONNO部分之间的共轭在偶氮二氧基化合物中几乎不存在(参见N.M.R.各种 speGies 的 o-甲基质子的化学位移 32933)。因此,预计亚硝基苯、邻亚硝基甲苯和 2,6-二甲基亚硝基苯系列中解离-二聚化的平衡常数会降低,这也在实验中观察到。这一建议与表3中报道的文献参数一致.表3 亚硝基+偶氮二氧基平衡的热力学参数。AH“/kJ A.S”/JCompound mol-1 K-1 mol-l 溶剂 参考文献 2-甲基-45.6 163 乙腈 18 亚硝基苯 2,6-二甲基-54.0 120 乙腈 这种亚硝基苯功 2,4,6-三甲基-50.6 157 苯 14 亚硝基苯 2,3,5,6-四甲基-61.1 130 苯 32 亚硝基苯 2,3,4,5,6-五甲基-50.2 100 苯 32 亚硝基苯 我们的结果表明动力学和热力学数据之间存在相关性,AG(约AHf)与AH平行”。这似乎既适用于取代,也适用于溶剂效应。过渡态被提出是围绕拉伸的N-N键的扭曲分子.12因此,过渡态中的共振效应可能类似于在单体中起作用的共振效应。[0/222 收稿日期:19801 年 2 月 7 日 参考文献 11.L. Hammick. J. Cliewi. SOC., 1931, 3105. a D. L. Hammick, R. G. A.New,和 L. E. Suttun、J. Clioti。Soc.,1932 年,742 年。DL哈米克,RGANew,以及 RB Williams、J. Clicm。SOC.,1934, 29.J.W.史密斯, J. Chem. SOC.,1957, 1124.J. W. Linnett 和 R. M. Rosenberg,Tetvahedropi,1964 年,20,52 年。J. F. Larcher 和 JW Linnett, J.Chcrn. SOC.(A), lW7, 1928.B. G. Gowenlock 和 I<。A. Kedish, Z. Plrvs. Chriii.(L'VCTIILI-FZRVT),1962,31,169。BG Gowenlock 和 J. Kay、J. Clzcni。SOC., 1962, 22W. L. Batt 和 B. G. Gowenlock, J. Chem. Soc., 1960, 376.lo L. Hatt、BG Gowenlock 和 J. Trotman、J. Chenz。Soc..1960, 2222.l1 L. Batt 和 B. G. Gowenlock, Tra~s.Favuda-v SOC.,l!JtiO, 56, 1022.l2 R. Hoffmann、R. Gleiter 和 F. R. Mallory、J. Anzer。塞西?.SOC.,1970, 92, 1460.l3 W. Luttke, 2.Electrochem., 1957, 61,302.l4 W. 诉Keussler 和 W. Luttke, 2.Electrochant., lY5!1, 63, ti 14.l5 B. G. Gowenlock 和 W. Luttke,夸脱。修订版,1958 年,12,321。l6 P. A. S. Smith, ' The Chemistry of Open ('hain 0rg.iiiicNitrogen Compounds', Benjamin, New York, 1966, vol. 1I, ch. 1:;. l7 J. ,H. Boyer in ' The Chemistry of the Nitro an(l Kitro-o Groups, ed. H. Feuer, Wiley, New York, 1968, I'art I, 13. 2 15. l8 M. Azoulay and G. Wettermark, ?'埃特拉赫德罗,1078,34,25!1. lg JP Snyder、ML Heyman 和 I<。N.苏辛,J.奥伊格。C*~PJJ/, 1975, 40, 1395.2o 我;。D. Greene 和 KE Gilbert,J. Urg。化学,1!75, 40, 140!1.21 Th. A. J. W. Wayer 和 Th. J. De Boer, 11'ec.7'vau. Clririi 1972, 01,565.22 J. C. Stowell, J. Org. Chem., 19'71, 86, 3056.2s G. B. Sergev 和 I. A. Leenson, Russ. J. Pliys.Cliwi.,1!7X,52,312。24 A.U.Chaudry和B.G.Gowenlock,J.Cliriir。Soc. (l~'),I!W, 1083.z5 W. J. Mijs、SE Hokstra、RH Ullman 和 JC。14a\iiiga.Rec. Trav. chinz., 1958, 77, 740.2e R. Holmes, R. P. 拜耳, L. A.埃雷德,H.I<。戴维斯,.\。\\' Weisenfeld, P. H. Bergman, and D. L. Nicholas, J. Org. C~PIII., 1965, 30, 3837.27 R. Holmes, J. Org. Chenz., 1964, 29, 3076.28 M. Azoulay, B. Symne, and G. Wettermark, Tctraliectvau, 1976, 32, 2961.29 M. Azoulay、T. Drakenberg 和 G. Wettermark,J.C.S. Perkin II,1979 年,第 199 页。30 W. Luttke,“Habilitationschrift”,弗莱堡,1956年。3l D. A. Dieterich, I. C. Paul, 和 D. Y.Curtin, J. Amcit.中国化学与研究院,1974, 96, 6372.32 R. Okazaki 和 N. lnamoto, J. Chenz.SOC. (R),1970, 1583.33 T. Dobau, T. I. Chihawara, and H. Yoshida, Nztll. Cliw~.SOC。日本, 1977, 50, 3158.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号