...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >The Schiff base between pyridoxal-5prime;-phosphate and hexylamine. Equilibria in solution
【24h】

The Schiff base between pyridoxal-5prime;-phosphate and hexylamine. Equilibria in solution

机译:吡哆醛-5′-磷酸和己胺之间的希夫碱。溶液中的平衡

获取原文
           

摘要

J. CHEM. SOC. PERKIN TRANS. 11 1989 The Schiff Base between PyridoxaL5rsquo;-Phosphate and Hexylamine. Equilibria in Solution Manuel Blazquez,rdquo; Jose M.Sevilla, Juana Perez, Manuel Dominguez, t and Francisco Garcia- Blanco$ Departamento de Quimica Fisica y Termodinamica Aplicada, Facultad de Ciencias, Universidad de Cordoba, 14004Cordoba, Spain Electrochemical and spectroscopic studies of the pyridoxal- 5rsquo;-phosphate-hexylamine Schiff base (PHSB) over a wide pH range have been carried out. This compound has been used as a simple model of the binding of pyridoxal-5lsquo;-phosphate (PLP) to protein. In this work different equilibria involved in the formation reaction have been considered and a quantitative distribution of the species in solution has been obtained. The method is based on the analysis of the reduction wave and absorption bands of the PHSB.Protonation equilibria constants (PHSB pK) have been obtained. Absorption spectra as a function of the medium composition have been resolved by a log normal distribution. Tautomeric equilibria have been considered and microscopic pK have been evaluated. Fluorescence results show that Schiff-base species bearing a protonated ring nitrogen are the most fluorescent. However, the fluorescence decreases in an acid medium due to an hydrolysis reaction. An important conclusion of this investigation is that the combined use of electrochemical and spectroscopic techniques is a valuable tool for the quantitative characterization of the pyridoxal-5rsquo;-phosphate Schiff bases. Pyridoxal-5rsquo;-phosphate (PLP) binds to protein by the formation of Schiff bases.14 To clarify the catalytic behaviour of PLP it is important to establish whether there is a relationship between the enzymatic activity and stability of the imine bond.The Schiff bases of PLP with amino acids or amines have been shown to have formation constants dependent on the acidity and relative permittivity of the medium.5-rsquo; rsquo;Stability profiles indicate that protonation equilibria can be responsible for this behaviour. Thus, the pK values of the Schiff base and the different molecular species occurring in solution must be clearly established. It is widely known that PLP Schiff bases undergo hydrolysis in an acid mediurn.l2-l6 Any study carried out in this medium should take into account all the species occurring in solution.Potentiometric and u.v.-visible measurements do not give unequivocal results owing to the influence of PLP and the amine, respectively. Vitamin euro;3, derivatives have been shown to exist in different tautomeric forms.rsquo; 8-2 Absorption spectra are complicated by the occurrence of several very close bands. However, the u.v.- visible bands of compounds of the vitamin B, group can be described on the basis of a log normal plot.22-25 In these cases, curve-fitting methods are a suitable tool for evaluation of the different molecular species. A study of the model reactions between amines or amino acids and PLP to simulate the PLP site in the enzyme is limited by the obtaining of the equilibrium concentration of the species involved in the reaction.The quantitative distribution of species, mainly in conditions approaching physiological en- vironments, is required to extrapolate the results to biological systems. The adduct formed on reaction of PLP with hexylamine is one of the simplest Schiff bases used as a model to illustrated binding. The kinetics of hydrolysis were studied by a t Departamento de Quimica Fisica, Universidad de Sevilla,Prof. Garcia Gonzalez,41071 Sevilla, Spain. 1Instituto Rocasolano,CSIC, 28006 Madrid, Spain. spectroscopic procedure.rsquo; 3-rsquo; In addition, electrochemical reduction was used to calculate the equilibrium formation con~tant.~~*~rsquo; This paper deals with an electrochemical and spectroscopic study of the PHSB to obtain a quantitative distribution of the ionic species in solution.In our investigation the combined use of these techniques has been shown as a valuable tool for study of the equilibrium Schiff base pyridoxal-5rsquo;-phosphate and it is possible to extend their application to binding models of increasing complexity. Results, in progress, with poly-L-lysine support this conclusion. Experimental PyridoxaL5rsquo;-phosphate was purchased from Sigma. All other chemicals were supplied by Merck and were of reagent grade. Acetate and phosphate buffer for pH 8.5 and phosphate and carbonate buffer for pH ~8.5were used. Ionic strength was adjusted with KCl. All measurements were made at 25 amp; 0.1 ldquo;C. DC and DP polarographic curves were recorded by means of a 626 Metrohm polarograph.A saturated calomel electrode was used as reference electrode. The working electrode was a mercury capillary. In DP polarography the drop time was 2 s, the pulse amplitude, AE, 10 mV and the pulse duration 60 ms. All measurements were made in a nitrogen atmosphere. Spectrophotometric measurements were performed on a Varian Cary 219 spectrophotometer with 1cm quartz cuvettes. The spectra of the Schiff base were recorded by using as blank a solution containing the equilibrium concentration of PLP. This concentration was obtained by DC or DP polarography Figure l(a). If reduction processes appeared very close a procedure based on the resolution of overlapped peaks in DP polarography was used 28*29 Figure l(b).The fluorescence spectra were recorded on an MPF 66 Perkin-Elmer Spectrophotofluorimeter furnished with a 150 W xenon lamp. The microcomputer used for the calculation was a 48K Apple I1 +. The Schiff base was obtained by adding known amounts of hexylamine to PLP solutions of known concentrations. Thus J. CHEM.SOC. PERKIN TRANS. 11 1989 .. ci . ! IP 0 ?.'f ? -400 -500 -600 El mV Figure 1. DC and DP polarography. (a) pH 4.0,40 ethanol vol., at 2 0oO: 1mol ratio of hexylamine:PLP. (6) pH 6.0,60 ethanol vol., at 300:1 mol ratio of hexylamine: PLP. DP polarography: Experimental polarogram. ---Theoretical profiles calculated according to ref. 28. solutions with different molar ratios were prepared.The mixtures were kept in the dark to avoid photolysis reaction^.^' The overall reaction between PLP and hexylamine can be represented by Scheme 1. RCHO + R'NH, RCH=NR' + H,O Scheme 1. KF,the apparent formation constant, is defined in equation (l), where cA, cB, and cp are the equilibrium concentrations of amine, Schiff base, and PLP, respectively. PHSB has four proton-accepting groups and therefore shows four macroscopic pK values. In addition, different tautomeric equilibria are involved and there are different neutral and ionic species in solution (Scheme 2). This reaction mixture shows, by DC polarography, one or two reduction waves.31 This fact is a function of the experimental conditions, such as pH and PLP: amine ratio.Under the experimental conditions of this work, a formation equilibrium due to pseudo-first chemical reactions can be assumed. The electrochemical behaviour is shown in Scheme 3. RCHO LLRCH=NR/2e,E," k, 12e,Ey1 (second wave) (first wave) Scheme 3. The first wave corresponds to a two-electron reduction of the imine group of PHSB and is represented by the standard potential, E",. The second wave corresponds to a two-electron reduction of the carbonyl group of the PLP, at E;, Er being more cathodic than E:. If the term kt (where k = k, +k, and t is the drop time in polarography) is sufficiently low, the perturbation of the equilibrium concentrations near the electrode surface due to the reduction of the Schiff base is not compensated for by the chemical reaction. In these conditions the process is controlled by diffusion of the Schiff base from the bulk solution.The experimental results at pH 11 (diffusion control in the limiting zone of the first wave) indicate such behaviour. In this limiting case, K (defined as K = kf/k, = cs/cp = KFcA)can be obtained from J. CHEM. SOC. PERKIN TRANS.11 1989 1231 A B C R R I I i0amp;CH20P03H2 H3C y+ H R I RI R I H"0 bCHzOPO3H-H-." bsol;bsol; H3C y+ H H H R R R I I I N'I R I R I Scheme 2. equation3' (2), where iL and iD are the limiting current of the electroactive species are the same, iL can also be expressed by equation (3), where xBis the molar fraction of the Schiff base first wave and the diffusion current of the initial analytical for all species in solution.concentration of PLP, respectively. The normalized limiting current of the first wave coincides According to this approach an apparent formation constant, with XB as indicated in equation (4). Due to the Proton- KF,as a function of pH was rep~rted.~~,~~ This indicates that iL is proportional to the equilibrium concentration of the IL-. LXs (4)-Schiff base. Assuming that the diffusion coefficients of two ID 1232 J. CHEM. SOC. PERKIN TRANS. 11 1989 4 4 ru+l (4 1 1, 0 3 6 9 PH 7 9 11 PH Figure 2. DC polarography. First wave. Plot of ZL us. pH. Molar ratio hexy1amine:PLP;(a)2 000: 1; (b)40: 1.Table 1. Fitting results of the curves ZL us. pH. Input parameters: pKpi, pK,, and KM. Optimized parameters: PKB,. Input output PKP, PKP2 2.50 3.80 PKBI PKB2 2.80 amp; 0.14 5.17 amp; 0.06 PKP, PKP, 6.17 8.44 PKB3 PKBd 7.37 k 0.03 11.55 -t 0.01 pK,, 10.70 PKM 2.40 accepting groups of the PLP, Schiff base, and hexylamine, different species are involved in the reaction in Scheme (l), depending on the pH. Therefore, KF can be expressed by equation (5), where Bi, Pi, and Ai represent any species 5 according to the protonation equilibria of the Schiff base, PLP, and hexylamine, and SB, Sp, S,, and KM are given for equations (6H9). (9) In equations (6)-(9), KBiand Kp,are the macroscopic ionization constants of the Schiff base and PLP, KN is the ionization constant of hexylamine, and B,, P,, and A, represent the most deprotonated species of the substances involved in the reaction in Scheme 1.Finally, it is easy to derive equation (10) from equations (4) and (5): where C, is the molar concentration of free hexylamine, which in our experimental conditions (c, 9 cp)can be taken as the initial concentration of the amine. In this work, equation (10) is used in relation to the polarographic results of the Schiff base and its application is given in the next section. Results and Discussion A polarographic study of the reaction of PLP with hexylamine was carried out over the entire pH range. The normalized limiting current, IL,of the first reduction wave (Schiff base) was obtained equation (4).Their variation with pH is shown in Figure 2 at two different molar ratios (amine :PLP). Diffusion control on the limiting current (pH 11) indicates that the kinetic effect of the reaction in Scheme 1 is not observed at the electrode-solution interphase. Therefore, in the experimental conditions equation (2) holds and the molar fraction of the Schiff base is given by equation (4). In addition, a single wave is observed in this pH range for the reduction of the Schiff base. Thus, the fast tautomeric equilibria involved in solution (Scheme 2) are not detected in the electrode process. The variation of xB with the pH is due to the different protonation equilibria involved in the reaction in Scheme 1.Equation (10) expresses a theoretical relationship between the normalized limiting current and these protonation equilibria. A fitting of this equation to experimental data was carried out by a computer. The procedure minimizes the sum of squares of deviation. Input parameters were Kpiof the PLP,33 KN of the hexylamine34 and the value of KM13226see equation (9). Output parameters, KBi values of the Schiff base, were the same in both molar ratios (amine:PLP). These results are an estimation of the macroscopic ionization pK of the Schiff base (Table 1, Scheme 2). Other estimations have been reported using different methods.' 3-14,26 Taking into account these values, pH values which ensure 85 of a macroscopic protonation stage were chosen and u.v.- visible spectra were recorded for different ethanol-water com-positions. Schiff base spectra, obtained as indicated in the Ex- perimental section, showed several overlapping bands.We have resolved these spectra from a log normal distrib~tion.~~-~'*~~ J. CHEM. SOC. PERKIN TRANS. 11 1989 1233 IA 11 0.6 40 500 400 hlnm 300 500 400 hlnm 300 A 0.6 A 0.6 0.4 1.:.. .. ....' .:... 0.2 .. .. .... ... .. '.. :. .. . ._ .. ..... . ._ ..... 0.0 .......... ... .......... :-......._,; .':......' 500 400 hlnm 300 500 400 h1nn-1 300 Figure 3. U.V. spectra of the Schiff base PLP-hexylamine in ethanol- water solutions. pH 6.0. 0 Experimental spectrum; total absorbance (sum ~ of the five log normal distributions); contribution of each individual species.The ethanol content (v/v) is indicated in the spectrum. Table 2. Molar absorptivity and molar area of the species of the Schiff base (see Scheme 2). A B C A I h bsol;r A If Species E,/mol-' dm3 cm-' a,/km mol-' E,/mol-' dm3 cm-' a,/km mol-' E,/mol-' dm3 cm-' a,/km mol-' (1) --(2) 11 765 f 159 490 k 18 3 945 f62 206 k 15 (3) 13388 amp; 181 481 f.18 3625 f57 211 amp; 16 4726 f.172 194 f21 (4) 8475 114 353 k 13 4 320 68 226 amp; 17 6400 f233 323 f36 (5) 7500 f 101 366 f20 4235 f.67 284 21 A computer program was written to handle the curve-fitting last region, the spectra were adjusted to avoid interference with pr~cedure.~~Input data are four parameters to describe an other bands.absorption band. These parameters are: absorption maximum The parameters of bands 1 and 3 were obtained at high wavelength (ki), absorbance maximum (Ai), half-width of the ethanol-water ratios in which they are the main absorption band (wi), and the skewness of the band (bi).The program bands. Parameters of band 2 were obtained in aqueous media minimizes the sum of squares of deviation and from the best- (low ethanol content). fit the output parameters are obtained. A comparison be- This absorption can be ascribed to the multipolar species (iC) tween experimental and theoretical spectra are shown in Figure as was reported in analogous Schiff bases.'' The band appears 3, at pH = 6, and at different ethanol concentrations in in polar media and at pH ca.7. solution. The band area for the simple ionic form is not dependent on Absorption bands were assigned to the ketoenamine species changes in the solvent composition, within experimental (415,275 nm) and enolimine species (335,250 nm) according to However, our results show that the area of bands 1, 2, (see Scheme 2, species A and B and 3 vary as a function of the ethanol-water composition.reported data8~'0~'2*37 respectively). The spectra were resolved by using five log normal These results indicate that tautomeric equilibria between curves. There are, in order of increasing energy, (a)band I of the ketoenamine, enolimine, and multipolar species are involved ketoenamine species, (6) the band of the multipolar form (Scheme 2, iA, iB, and iC species).* (Scheme 2), species C), (c) band I of the enolimine species, (d) The molar area of an individual species, azF,is defined by the 1924338band I1 of the ketoenamine, and (e) band I1 of the enolimine expre~sion,~ species and uncharacterized absorption (zone 250 nm).In this * Throughout this paper, the prefix i in species A, B, and C refers to where ai is the band area of the species i and xi is its molar species at different stages of protonation. fraction. The molar area of iA, iB, and iC species can be calculated from the experimental area (curve resolution), taking into account the fact that xA + xe + xc = 1. The data for molar area and molar absorptivity for different species and the standard deviations are listed in Table 2.Mole fractions can be evaluated from equation (1 1) as a function of ethanol content. The results are gathered in Table 3. From these results and macroscopic pK values (Table l),microscopic pK values between some species in solution can be evaluated. Values of pKcorresponding to species in a neutral pH zone are given in Table 4. For example, a pK value of 6.9 amp; 0.1 Table 3. Molar fraction of the species of the Schiff base as a function of the ethanol-water composition (see Scheme 2). Species xA XB XC Aqueous medium (1) ---(1 1 ethanol vol.) (2) 0.81 5 0.04 0.19 amp; 0.02 -(3) 0.57k0.03 0.16 k0.01 0.27 amp; 0.03 (4) 0.73 0.04 0.10 amp; 0.01 0.17f0.02 (5) -(40) ethanol vol.) (1) ---(2) 0.68f0.04 0.32 f0.03 -(3) 0.44 f0.02 0.36 _+ 0.02 0.20 0.03 (4) 0.64 k0.04 0.35 _+ 0.03 0.01 f0.001 (5) 0.61 0.03 0.39 f0.04 -(60 ethanol vol.) (1) ---(2) 0.58 A 0.03 0.41 amp; 0.05 0.01 k 0.001 (3) 0.39 f0.02 0.60 amp; 0.06 0.01 f0.001 (4) 0.51 f0.03 0.49 f0.05 -(5) 0.52amp; 0.03 0.48 f 0.04 -(80 ethanol vol.) (1) ---(2)(3) 0.25 f0.01 0.75 f0.07 -(4) 0.40 f0.02 0.60 k0.04 -(5) 0.44 f0.02 0.56 0.05 -J.CHEM. SOC. PERKIN TRANS. II 1989 was calculated between species 3C and 4A (see Scheme 2) taking into account the third macroscopic pK of 7.37 amp; 0.03 (Table 1). Fluoroscence techniques are widely used in protein studies. It is known that the Schiff base formed by PLP in protein (phosphorylase b, for example 3), by excitation at 425 nm, shows a pH-dependent emission at 535 nm.This variation is similar to an acid-base titration curve. Understanding the role of the proton-accepting group in the coenzyme site requires parallel studies on model compounds. Thus, fluorescence studies of different Schiff bases were rep~rted.~.~~-~l In this work, the fluorescence of PHSB was investigated. The study was carried out both in an aqueous medium and in ethanol-water solutions. In polar media the absorption spectra of the Schiff base show a main band at 415 nm. This band corresponds to ketoenamine species (Scheme 2); an excitation wavelength of 415 nm was therefore used. Different molar ratios amine: PLP were studied. Our results show that fluorescence is pH-dependent (Figure 4).In solutions of ethanol (60, v/v), an analogous variation of fluorescence intensity and emission were observed. However, in these conditions, a lower intensity was obtained. The maximum wavelength varies in the range 490-530. This behaviour can be explained by taking into account the protonation equilibria of the Schiff base. A theoretical expression of the fluorescence as a function of pH was derived. In this approach, the observed fluorescence intensity is con- sidered to be due to the contribution of all fluorescent species in solution. There are five species of the Schiff base related uia macroscopic ionization equilibria. Therefore, the fluorescence intensity can be expressed as equation (12), 5 F= Fi i= 1 and Table 4.Microscopic pK values of the some of the Schiff base species depicted in Scheme 2. Equilibrium (2),(3) species 5.17 f 0.06 PKBi 5.3 k 0.1 PKAA 5.9 k0.1 PKAB 5.6 amp; 0.1 PKAC 4.7 f0.1 PKBA 5.2 f0.2 PKBB 5.0 f0.2 PKBC -PKCA -Pamp;B -PKCC (3)=(4) 7.37k 0.03 8.5 f0.1 8.1 k0.1 7.9 f0.1 6.7 f0.1 7.5 amp; 0.1 7.3 k0.1 6.9 2 0.1 7.7 f0.1 7.6 k0.1 450 500 550 600 650 450 500 550 600 650 h Inm htnm Figure 4. Fluorescence of the Schiff base PLP:hexylamine. Influence of pH. he,, = 415 nm, cp = lW5mol dm-3. Molar ratio hexy1amine:PLP (2 OOO: l).(a)SpectraatpH:(a)2.0,(b)2.5,(c)3.0,(d)3.5,(e)4.0,(f)4.5,(g)5.0,(h)5.5,(i)6.0,(j)6.2,(k)6.5),(1)7.5,(m)8.5,and(n)9.4(~)Emissionwave-length. J.CHEM. SOC. PERKIN TRANS. II 1989 2 fk 6 8 10 PH F5 0 2 4 6 8 10 PH Figure 5. Comparison of experimental and calculated fluorescence intensity. Influence of the pH. 0Experimental values; -theoretical values calculated from equation (15); . . . contribution of the species of the Schiff base. (a)Aqueous media. (b)60ethanol vol. Table 5. Parameters of the curve-fitting fluorescence us. pH. PKB, PKB3 PKB, PKB. 2.80 amp; 0.15 5.24 + 0.02 6.86 f 0.02 11.57 0.02 Species (1) (2) (3) (4) (5) qi x 10-4a 500.0 500.0 151.0 2.30 2.30 Standarddeviation f0.2 f0.2 fO.l f35 +82 'Values obtained with the concentration expressed in mol dm-3. where I, is the intensity of the exciting radiation,flO) is the geometric factor, g(h)is the detector response, Clexc is the molar absorptivity at the exciting wavelength, 'pi is the quantum efficiency of species i, 1is the sample path length, and Bi is the molar concentration of species i of the Schiff base.From equations (12)414), and taking into account equations (5)-(9), equation (1 5) can be easily derived. where cpis the concentration of PLP and other symbols used have the aforementioned meaning. Equation (1 5) is valid assuming that there is no substance with emission by excitation at 415 nm, other than the Schiff base, and that there is not pH-dependent buffer quenching. These statements were verified for our experimental conditions. Equation (15) gives a relationship between the fluorescence 1235 intensity and equilibria involved in the formation of the Schiff base (1).This equation was fitted to the experimental data of Fluorescence us. pH. Input parameters were the experimental conditions, cpand cA,and thepK values of PLP and hexylamine (pK,,, pKN)33*34. In both media good agreement is observed between the theoretical and experimental fluorescence (Figure 5). The best fits were obtained using the parameters given in Table 5. The values of qiobtained indicate that Schiff base species (1)-(3), i.e., species bearing a protonated ring nitrogen, are the most fluorescent (Scheme 2). A similar conclusion was obtained in other studies of the vitamin B, group.42 These results show some differences between second and third pK values (Table 5) and macroscopic pK (Table 1).However, these pK values are very similar to some microscopic pK values given in Table 4 (pK2A,3A= 5.30 f0.1, PK~C/~A = 6.9 f0.1). Species 1A and 2A are responsible for fluorescence in an acid medium. However, low fluorescence is observed due to the low stability of the Schiff base in this medium as is shown by the electrochemical study (Figure 2). In the pH range 5-7 a fluorescence intensity maximum is observed. This variation is the result of an increase in the stability of the Schiff base as the pH increases. In weak basic media the concentration of species 2A is negligible. Therefore, the observed fluorescence is due to the multipolar species (iC)for which the absorption maximum is ca. 400 nm.In basic media the concentration of these species decreases as the pH increases, as indicated by the absence of the corresponding band in the absorption spectra. Schiff base stability increases as the ethanol content increases in the sol~tion.~~,~~ However, a shift towards enolimine species occurs as the polarity of the solvent decreases8.'0.'2 (i.e.from iA to iB species in Scheme 2). The experimental behaviour shows a decrease in the fluorescence intensity as compared with aqueous media. A fluorescence maximum appears at pH ca. 5, where a compensation between the increase in its stability and the decrease of the concentration of the fluorescent species 2A is obtained (Scheme 2). In less polar media the multi- polar species is not detected in the pH range studied and this explains the decrease in fluorescence, even in a weakly acidic medium.On the other hand, fluorescence results agree with the U.V. study. At pH 6, excitation fluorescence spectra in ethanol solution (60, v/v), show a band at 415 nm due to the ketoenamine species (iA). However, in aqueous solution the maximum wavelength appears at 408 nm, showing the contri- bution of both ketoenamine (415 nm) and multipolar (404nm) fluorescent species. In conclusion, the quantitative characterization of the adduct PLP-hexylamine was obtained. Data for the species in solution are given in the Tables. In all cases the standard deviation of the parameters obtained from the fitting of the experimental data to theoretical models are indicated.In general the standard deviations in the spectra deconvolution were 0.01 when ca. 100 values of wavelength were fitted. Deviations in the parameters of the Schiff base species were determined mainly by experimental error. Data corresponding to the species present to a lesser extent show an appreciable deviation due to the inaccuracy of the parameters obtained. In these cases the error can be minimized in part by an adequate selection of ex-perimental conditions. The combined use of electrochemical and spectroscopic techniques is shown as a valuable alternative to the study of binding models. The quantitative characterization is useful in explaining the shift observed in the environments in which this coenzyme acts.Although the Schiff base studied here is the simplest model of PLP binding, the method developed is of general application. Our future goal is to apply it in models of increasing complexity, approaching physiological environ- ments. In this sense, some studies of PLP to poly-L-lysine binding seem to confirm the potential of the method. Acknowledgements This work was supported by grants from the CAICYT (1 582/82) and Junta de Andalucia (Ref. 07/CLM/MDM, 85-87). References 1 M. E. Goldberg, S. York, and L. Stryer, Biochemistry, 1968,7, 3662. 2 E. E. Snell and S. J. Di Mari, in lsquo;The Enzymes,rsquo; ed. Paul D. Boyer, Academic Press, London and New York, 1970, vol. 2, pp. 335-370. 3 M. Cortijo, I. Z. Steinberg, and S. Shaltiel, J.Biol. Chem., 1971,246, 933. 4 E. E. Snell, Vitam. Horm. (N.Y.),1971,28,265. 5 H. N. Christensen, J. Am. Chem. Soc., 1958,80,99. 6 S. Shaltiel and M. Cortijo, Biochem. Biophys. Res. Commun., 1970, 41, 594. 7 P. S. Tobias and R. G. Kallen, J. Am. Chem. Soc., 1975,97,6530. 8 M. Cortijo, J. Llor, J. Jimenez, and F. Garcia-Blanco, Eur. J. Biochem., 1976,6552 1. 9 B. H. Jo, V. Nair, and L. Davis, J. Am. Chem. SOC., 1977,99,4467. 10 J. Llor and M. Cortijo, J. Chem. SOC., Perkin Trans. 2, 1977,1111. 11 Y. Karube and Y. Matshusima, Chem. Pharm. Bull., 1977,25,2568. 12 C. M. Metzler, A. Cahill, and D. E. Metzler, J. Am. Chem. Soc., 1980, 102,6075. 13 J. M. Sanchez-Ruiz, J. M. Rodriguez-Pulido, J. Llor, and M. Cortijo, J, Chem. SOC.,Perkin Trans.2, 1982, 1425. 14 M. A. Vazquez, J. Donoso, F. Muiioz, F. Garci Blanco, M. A. Garcia del Vado, and G. Echevarria, Bull. SOC. Chim. France, 1988,361. 15 J. Donoso, F. Muiioz, M. A. Garcia del Vado, G. Echevarria, and F. Garcia Blanco, Biochem. J., 1986,238, 137. 16 M. A. Garcia del Vado, J. Donoso, F. Muiioz, G. Echevarria, and F. Garcia Blanco, J. Chem. SOC., Perkin Trans. 2, 1987,445. 17 A. Giartosio, C. Salerno, F. Franchetta, and C. Turano, J. Biol. Chem., 1982,257,8163. 18 S. A. Harris, T. J. Webb, and K. Folkers, J. Am. Chem. SOC., 1940,62, 3198. 19 F. J. Anderson and A. E. Martell, J. Am. Chem. SOC.,1964,86,715. 20 Y. V. Morozov, N. P. Bazhulina, M. Y. Karspeisky, B. J. Ivanov, and A. I. Kuklin, Biojizika., 1966, 11, 228. J.CHEM. SOC. PERKIN TRANS. II 1989 21 C. M. Harris, R. J. Johnson, and D. E. Metzler, Biochim. Biophys. Acta, 1976,421, 181. 22 K. Nagano and D. E. Metzler, J. Am. Chem. SOC.,1967,89,2891. 23 D. B. Siano and D. E. Metzler, J. Chem. Phys., 1969,51, 1856. 24 R. J. Johnson and D. E. Metzler, Methods Enzymol., 1970, MA, 433. 25 D. E. Metzler, C. M. Harris, R. L. Reeves, H. W. Lawton, and M. S. Maggio, Anal. Chem., l977,49,864A. 26 J. Llor, J. Bonal, and M. Cortijo, Collect. Czech. Chem. Commun., 1983,48,1950. 27 M. Dominguez, J. M. Sevilla, F. Garcia Blanco, and M. Blazquez, Biolectrochem. Bioenerg., 1986,16,317 (Chem. Abstr., 1987,107,311, 355260. 28 J. M. Rodriguez-Mellado, M. Blazquez, M. Dominguez, and J. J. Ruiz, J. Elecrroanal. Chem. Interfacial, 1985, 195,263.29 J. M. Rodriguez-Mellado, M. Blazquez, and M. Dominguez, Comput. Chem., 1988,12,257. 30 A. L. Morrison and R. F. Long, J, Chem.Soc., 1958,211. 31 J. Llor and M. Cortijo, J. Chem. SOC., Perkin Trans. 2, 1978,409. 32 J. M. Saveant, Bull. SOC. Chim. France, 1967,471, and references cited therein. 33 M. Blizquez, M. Dominguez, F. Garcia Blanco, C. Rubio, J. Donoso, and R. Izquierdo, Actas Simp. Iberoam. Catal., 1984,1,364. 34 A. Albert and E. P. Serjeant, in lsquo;The Determination of Ionization Constants. A Laboratory Manual,rsquo; Chapman and Hall, 1971, London, pp. 92-103,9th edn. (Chemical Abstr., 1985,102,91905n). 35 R. D. B. Frazer and E. Susuki, Anal. Chem., 1969,41,37. 36 J. M. Sevilla, M. Dominguez, F. Garcia Blanco, and M. Blazquez, Comput. Chem., 1989,13,197. 37 D. Heinert and A. E. Martell, J. Am. Chem. Soc., 1963,85, 183. 38 D. E. Metzler, C. M. Harris, R. J. Johnson, D. B. Siano, and J. A. Thomson, Biochemistry, 1973,12, 5377. 39 P. Fasella, C. Turano, A. Giartosio, and I. Hammady, G. Biochim., 1961, 10, 175. 40 M. Arrio-Dupont, Photochem. Photobiol., 1970,12,297. 41 0.Honikel and N. B. Madsen, J. Biol. Chem., 1972,247, 1057. 42 J. W. Bridges, D. S. Davis, and R. T. Williams, Biochem. J., 1966,98, 451. 43 M. A. Garcia del Vado, G. R. Echevarria, A. Garcia-Espantaleon, J. Donoso, F. Muiioz, and F. Garcia-Blanco, J. Mol. Catal., 1988,44, 313. Received 16th August 1988; Paper 8/03327G
机译:J. CHEM. SOC. PERKIN TRANS. 11, 1989 吡哆醇L5'-磷酸和己胺之间的希夫碱。Equilibria in Solution Manuel Blazquez,“ Jose M.Sevilla, Juana Perez, Manuel Dominguez, t and Francisco Garcia- Blanco$ Departamento de Quimica Fisica y Termodinamica Aplicada, Facultad de Ciencias, Universidad de Cordoba, 14004Cordoba, Spain 在很宽的pH值范围内对吡哆醛-5'-磷酸己胺希夫碱(PHSB)进行了电化学和光谱研究。该化合物已被用作吡哆醛-5'-磷酸 (PLP) 与蛋白质结合的简单模型。在这项工作中,考虑了形成反应中涉及的不同平衡,并获得了物质在溶液中的定量分布。该方法基于对PHSB的还原波和吸收带的分析。已获得质子化平衡常数 (PHSB pK)。吸收光谱作为介质成分的函数已通过对数正态分布解析。已经考虑了互变异构平衡,并评估了微观 pK。荧光结果表明,带有质子化环氮的希夫碱基物质的荧光最强。然而,由于水解反应,荧光在酸性介质中会降低。这项研究的一个重要结论是,电化学和光谱技术的结合是定量表征吡哆醛-5'-磷酸希夫碱的宝贵工具。吡哆醛-5'-磷酸 (PLP) 通过形成希夫碱基与蛋白质结合.14 为了阐明 PLP 的催化行为,重要的是要确定酶活性与亚胺键的稳定性之间是否存在关系。PLP与氨基酸或胺的希夫碱已被证明具有依赖于介质的酸度和相对介电常数的形成常数.5-'稳定性曲线表明质子化平衡可以负责这种行为。因此,必须明确确定希夫碱的pK值和溶液中存在的不同分子种类。众所周知,PLP Schiff碱在酸性介质中发生水解.l2-l6 在这种介质中进行的任何研究都应考虑溶液中出现的所有物质。由于PLP和胺的影响,电位测量和紫外可见测量不能给出明确的结果。维生素€3,衍生物已被证明以不同的互变异构形式存在。8-2 吸收光谱因几个非常接近的波段的出现而变得复杂。然而,维生素B组化合物的u.v.可见条带可以在对数正态图的基础上进行描述。22-25 在这些情况下,曲线拟合方法是评估不同分子种类的合适工具。对胺或氨基酸与PLP之间的模型反应进行研究以模拟酶中的PLP位点受到获得参与反应的物质的平衡浓度的限制。物种的数量分布,主要是在接近生理环境的条件下,需要将结果外推到生物系统。PLP与己胺反应形成的加合物是最简单的希夫碱之一,用作说明结合的模型。水解动力学由塞维利亚大学Quimica Fisica教授Garcia Gonzalez教授研究,西班牙塞维利亚41071。1Instituto Rocasolano,CSIC,28006 马德里,西班牙。光谱程序。3-' 此外,还利用电化学还原法计算了平衡形成的 con~tant.~~*~' 本文对PHSB进行了电化学和光谱研究,以获得溶液中离子物种的定量分布.在我们的研究中,这些技术的组合使用已被证明是研究平衡希夫碱吡哆醛-5'-磷酸的宝贵工具,并且有可能将其应用扩展到越来越复杂的结合模型。正在进行的聚-L-赖氨酸研究结果支持这一结论。实验性吡哆醇L5'-磷酸是从Sigma购买的。所有其他化学品均由默克公司提供,属于试剂级。使用pH 种 E,/mol-' dm3 cm-' a,/km mol-' E,/mol-' dm3 cm-' a,/km mol-' E,/mol-' dm3 cm-' a,/km mol-' (1) --(2) 11 765 f 159 490 k 18 3 945 f62 206 k 15 (3) 13388 & 181 481 f.18 3625 f57 211 & 16 4726 f.172 194 f21 (4) 8475 114 353 k 13 4 320 68 226 & 17 6400 f233 323 f36 (5) 7500 f 101 366 f20 4235 f.67 284 21 编写了计算机程序来处理曲线拟合的最后一个区域,调整光谱以避免干扰 pr~cedure.~~输入数据是描述其他波段的四个参数。这些参数是:吸收最大值 波段 1 和 3 的参数是在高波长 (ki)、吸光度最大值 (Ai)、它们作为主要吸收带的乙醇-水比的半宽 (wi) 和波段偏度 (bi) 下获得的。程序乐队。在水性介质中获得的波段 2 的参数最小化了偏差的平方和,并且与最佳 - (低乙醇含量)相差。拟合,得到输出参数。比较是 - 这种吸收可以归因于多极物质 (iC) 补间实验和理论光谱如图所示,如在类似的希夫碱基中报道的那样。在pH = 6时,在极性介质和pH ca.7下,该条带显示为3。溶液。简单离子形式的条带面积不依赖于吸收带被分配到酮烯胺物种在溶剂组合物中的变化,在实验(415,275 nm)和烯诺胺种类(335,250 nm)内,然而,我们的结果表明,条带1、2、(参见方案2,物种A和B以及3)的面积随着乙醇-水组合物的变化而变化。上报数据分别为8~'0~'2*37)。采用5个对数法线解析谱图,结果表明曲线之间存在互变异构平衡。按照能量增加的顺序,有(a)酮烯胺的能带I,烯诺胺和多极物种涉及酮烯胺物种,(6)多极形式的能带(方案2,iA,iB和iC物种)。 (c)烯诺胺物种的带I, (d)单个物种的摩尔面积azF由酮烯胺的1924338带I1定义, (e) 烯醇胺 expre~sion,~ 物种和未表征吸收的波段 I1(区域 <250 nm)。在本文中,A、B 和 C 物种中的前缀 i 是指其中 ai 是物种 i 的带面积,习 是其在质子化不同阶段的摩尔物种。分数。考虑到 xA + xe + xc = 1 这一事实,可以从实验面积(曲线分辨率)计算 iA、iB 和 iC 物种的摩尔面积。不同物种的摩尔面积和摩尔吸收率的数据以及标准偏差列在表2中,摩尔分数可以从公式(1 1)中评估为乙醇含量的函数。结果见表3。根据这些结果和宏观pK值(表l),可以评估溶液中某些物质之间的微观pK值。表4给出了对应于中性pH区物质的pK值。例如,pK值为6.9和0.1表3。希夫碱物质的摩尔分数作为乙醇-水组成的函数(见方案2)。物种 xA XB XC 水性培养基 (1) ---(1 1% 乙醇体积)(2) 0.81 5 0.04 0.19 & 0.02 -(3) 0.57k0.03 0.16 k0.01 0.27 & 0.03 (4) 0.73 0.04 0.10 & 0.01 0.17f0.02 (5) -(40%) 乙醇 vol.)(1) ---(2) 0.68f0.04 0.32 f0.03 -(3) 0.44 f0.02 0.36 _+ 0.02 0.20 0.03 (4) 0.64 k0.04 0.35 _+ 0.03 0.01 f0.001 (5) 0.61 0.03 0.39 f0.04 -(60% 乙醇体积)(1) ---(2) 0.58 A 0.03 0.41 & 0.05 0.01 k 0.001 (3) 0.39 f0.02 0.60 & 0.06 0.01 f0.001 (4) 0.51 f0.03 0.49 f0.05 -(5) 0.52& 0.03 0.48 f 0.04 -(80% 乙醇体积)(1) ---(2)(3) 0.25 f0.01 0.75 f0.07 -(4) 0.40 f0.02 0.60 k0.04 -(5) 0.44 f0.02 0.56 0.05 -J.CHEM. SOC. PERKIN TRANS. II 1989 是在物种 3C 和 4A 之间计算的(见方案 2),同时考虑到 7.37 和 0.03 的第三宏观 pK(表 1)。荧光技术广泛用于蛋白质研究。众所周知,蛋白质中 PLP 形成的 Schiff 碱基(例如磷酸化酶 b,例如 3)通过在 425 nm 处激发,在 535 nm 处显示出 pH 依赖性发射。这种变化类似于酸碱滴定曲线。了解质子接受基团在辅酶位点中的作用需要对模型化合物进行平行研究。因此,对不同希夫碱基的荧光研究进行了 rep~rted.~.~~-~l 本工作研究了 PHSB 的荧光。该研究在水性介质和乙醇 - 水溶液中进行。在极性介质中,希夫碱基的吸收光谱显示 415 nm 处的主带。该条带对应于酮烯胺物种(方案2);因此,使用了 415 nm 的激发波长。研究了不同摩尔比的胺:PLP。我们的结果表明,荧光是pH依赖性的(图4)。在乙醇溶液(60%,v/v)中,观察到荧光强度和发射的类似变化。然而,在这些条件下,获得了较低的强度。最长在 490-530 范围内变化。这种行为可以通过考虑希夫碱的质子化平衡来解释。推导了荧光随pH值变化的理论表达式。在这种方法中,观察到的荧光强度被认为是由于溶液中所有荧光物质的贡献。希夫碱相关的 uia 宏观电离平衡有 5 种。因此,荧光强度可以表示为公式(12),5 F= Fi i= 1和表4.方案2中描述的一些希夫碱基物种的微观pK值。平衡 (2),(3) 种类 5.17 f 0.06 PKBi 5.3 k 0.1 PKAA 5.9 k0.1 PKAB 5.6 & 0.1 PKAC 4.7 f0.1 PKBA 5.2 f0.2 PKBB 5.0 f0.2 PKBC -PKCA -P&B -PKCC (3)=(4) 7.37k 0.03 8.5 f0.1 8.1 k0.1 7.9 f0.1 6.7 f0.1 7.5 & 0.1 7.3 k0.1 6.9 2 0.1 7.7 f0.1 7.6 k0.1 450 500 550 600 650 450 500 550 600 650 h Inm htnm 图 4.希夫碱PLP:己胺的荧光。pH值的影响。he,, = 415 nm, cp = lW5mol dm-3.摩尔比 hexy1amine:PLP (2 OOO: l).(一)光谱pH值:(a)2.0,(b)2.5,(c)3.0,(d)3.5,(e)4.0,(f)4.5,(g)5.0,(h)5.5,(i)6.0,(j)6.2,(k)6.5),(1)7.5,(m)8.5,和(n)9.4(~)发射波长。J.CHEM. SOC. PERKIN TRANS. II 1989 2 fk 6 8 10 PH F5 0 2 4 6 8 10 PH 图 5.实验和计算荧光强度的比较。pH值的影响。0实验值;-由公式(15)计算的理论值;. . .希夫碱基物种的贡献。(一)水性介质。(b)60%乙醇体积表5。曲线拟合荧光的参数。酸碱度。PKB、PKB3、PKB、PKB。2.80 & 0.15 5.24 + 0.02 6.86 f 0.02 11.57 0.02 种类 (1) (2) (3) (4) (5) qi x 10-4a 500.0 500.0 151.0 2.30 2.30 标准偏差 f0.2 f0.2 fO.l f35 +82 '以mol dm-3表示的浓度获得的值。其中I是激发辐射的强度,flO)是几何因子,g(h)是探测器响应,Clexc是激发波长处的摩尔吸收率,'pi是物种i的量子效率,1是样品路径长度,[Bi]是希夫碱物种i的摩尔浓度。从等式(12)414),并考虑到等式(5)-(9),可以很容易地推导出等式(1 5)。其中 cpis、PLP 的浓度和其他使用的符号具有上述含义。公式(1 5)是有效的,假设除了希夫碱之外,没有物质在415 nm处通过激发发射,并且不存在pH依赖性的缓冲液淬灭。这些陈述在我们的实验条件下得到了验证。公式 (15) 给出了荧光 1235 强度与希夫碱 (1) 形成所涉及的平衡之间的关系。该方程拟合到Fluorescence us的实验数据中。酸碱度。输入参数为实验条件、cpand、cA、pK值(pK,,,pKN)33*34。在两种介质中,理论荧光和实验荧光之间都观察到良好的一致性(图5)。使用表 5 中给出的参数获得最佳拟合。得到的qi值表明,希夫碱基物种(1)-(3),即携带质子化环氮的物种,荧光最强(方案2)。42 这些结果显示第二和第三 pK 值(表 5)和宏观 pK 值(表 1)之间存在一些差异。然而,这些pK值与表4中给出的一些微观pK值非常相似(pK2A,3A= 5.30 f0.1,PK~C/~A = 6.9 f0.1)。物质 1A 和 2A 负责酸性介质中的荧光。然而,由于希夫碱在这种介质中的稳定性低,观察到低荧光,如电化学研究所示(图2)。在pH值范围5-7中,观察到最大荧光强度。这种变化是随着pH值的增加,希夫碱的稳定性增加的结果。在弱碱性介质中,物质2A的浓度可以忽略不计。因此,观察到的荧光是由多极物质 (iC) 引起的,其最大吸收波长约为 400 nm。在碱性介质中,这些物质的浓度随着pH值的增加而降低,如吸收光谱中没有相应的条带所示。席夫碱稳定性随着溶剂中乙醇含量的增加而增加~~,~~然而,随着溶剂极性的降低,会发生向烯诺胺种类的转变8.'0.'2(即从方案2中的iA到iB物种)。实验行为表明,与水性介质相比,荧光强度降低。在pH值约为5时出现最大荧光值,其中获得了其稳定性的增加和荧光物质2A浓度的降低之间的补偿(方案2)。在极性较弱的介质中,在所研究的pH范围内未检测到多极物质,这解释了荧光的降低,即使在弱酸性介质中也是如此。另一方面,荧光结果与U.V.研究一致。在pH 6时,乙醇溶液(60%,v/v)中的激发荧光光谱在415 nm处显示出一个带,这是由于酮胺物种(iA)所致。然而,在水溶液中,最长出现在 408 nm 处,显示了酮烯胺 (415 nm) 和多极 (404nm) 荧光物质的贡献。综上所述,获得了加合物PLP-己胺的定量表征。溶液中物质的数据在表中给出。在所有情况下,都标明了从实验数据拟合到理论模型中获得的参数的标准偏差。一般来说,当拟合约100个波长值时,光谱反卷积的标准偏差为<0.01。希夫碱基参数的偏差主要由实验误差决定。与在较小程度上存在的物种相对应的数据显示出明显的偏差,这是由于所获得的参数不准确。在这些情况下,可以通过充分选择经验条件来部分减少误差。电化学和光谱技术的结合使用被证明是结合模型研究的有价值的替代方案。定量表征有助于解释在这种辅酶起作用的环境中观察到的转变。虽然这里研究的希夫碱基是最简单的PLP结合模型,但所开发的方法具有普遍应用性。我们未来的目标是将其应用于越来越复杂的模型中,接近生理环境。从这个意义上说,一些关于PLP与聚-L-赖氨酸结合的研究似乎证实了该方法的潜力。致谢 这项工作得到了 CAICYT (1 582/82) 和安达卢西亚军政府 (Ref. 07/CLM/MDM, 85-87) 的资助。参考文献 1 M. E. Goldberg, S. York, and L. Stryer, Biochemistry, 1968,7, 3662.2 E. E. Snell 和 S. J. Di Mari,收录于《酶》,Paul D. Boyer 编,学术出版社,伦敦和纽约,1970 年,第 2 卷,第 335-370 页。3 M. Cortijo, I. Z. Steinberg, and S. Shaltiel, J.Biol. Chem., 1971,246, 933.4 E.E.斯内尔,维他命。霍姆。(纽约),1971,28,265.5 H. N. Christensen, J. Am. Chem. Soc., 1958,80,99.6 S. Shaltiel 和 M. Cortijo,Biochem。生物物理学。Res. Commun., 1970, 41, 594.7 P. S. Tobias 和 R. G. Kallen, J. Am. Chem. Soc., 1975,97,6530.8 M. Cortijo, J. Llor, J. Jimenez, and F. Garcia-Blanco, Eur. J. Biochem., 1976,6552 1.9 B. H. Jo, V. Nair, and L. Davis, J. Am. Chem. SOC., 1977,99,4467.10 J. Llor 和 M. Cortijo, J. Chem. SOC., Perkin Trans. 2, 1977,1111.11 Y. Karube 和 Y. Matshusima,Chem. Pharm. Bull.,1977,25,2568。12 C. M. Metzler, A. Cahill, and D. E. Metzler, J. Am. Chem. Soc., 1980, 102,6075.13 J. M. Sanchez-Ruiz, J. M. Rodriguez-Pulido, J. Llor, and M. Cortijo, J, Chem. SOC.,Perkin Trans.2, 1982, 1425.14 M.A.巴斯克斯、J.多诺索、F.穆伊奥兹、F.加西·布兰科、M.A.加西亚·德尔·瓦多和G.埃切瓦里亚,公牛。SOC. Chim.法国,1988,361。15 J. Donoso、F. Muiioz、M. A. Garcia del Vado、G. Echevarria 和 F. Garcia Blanco,Biochem。J., 1986,238, 137.16 M. A. Garcia del Vado, J. Donoso, F. Muiioz, G. Echevarria, and F. Garcia Blanco, J. Chem. SOC., Perkin Trans. 2, 1987,445.17 A. Giartosio, C. Salerno, F. Franchetta, and C. Turano, J. Biol. Chem., 1982,257,8163.18 S. A. Harris, T. J. Webb, and K. Folkers, J. Am. Chem. SOC., 1940,62, 3198.19 F. J. Anderson 和 A. E. Martell, J. Am. Chem. SOC.,1964,86,715.20 Y. V. Morozov, N. P. Bazhulina, M. Y. Karspeisky, B. J. Ivanov, and A. I. Kuklin, Biojizika., 1966, 11, 228.J.CHEM. SOC. PERKIN TRANS. II 1989 21 C. M. Harris, R. J. Johnson, and D. E. Metzler, Biochim.生物物理学。学报, 1976,421, 181.22 K. Nagano 和 D. E. Metzler, J. Am. Chem. SOC.,1967,89,2891.23 D. B. Siano 和 D. E. Metzler, J. Chem. Phys., 1969,51, 1856.24 R. J. Johnson 和 D. E. Metzler,Methods Enzymol.,1970 年,马萨诸塞州,433 页。25 D. E. Metzler, C. M. Harris, R. L. Reeves, H. W. Lawton, and M. S. Maggio, Anal. Chem., l977,49,864A.26 J. Llor、J. Bonal 和 M. Cortijo,收集。捷克语。化学学报, 1983,48,1950.27 M. Dominguez、J. M. Sevilla、F. Garcia Blanco 和 M. Blazquez,Biolectrochem。生物能源, 1986,16,317 (Chem. Abstr., 1987,107,311, 355260. 28 J. M. Rodriguez-Mellado, M. Blazquez, M. Dominguez, and J. J. Ruiz, J. Elecrroanal. Chem. Interfacial, 1985, 195,263.29 J. M. Rodriguez-Mellado, M. Blazquez, and M. Dominguez, Comput. 化学, 1988,12,257. 30 A. L. Morrison 和 R. F. Long, J, Chem.Soc., 1958,211. 31 J. Llor 和 M. Cortijo, J. Chem. SOC., Perkin Trans. 2, 1978,409. 32 J.M.救世主,公牛。SOC. Chim.法国,1967,471,以及其中引用的参考文献。33 M.布利兹克斯、M.多明格斯、F.加西亚·布兰科、C.卢比奥、J.多诺索和R.伊斯基耶多,Actas Simp。伊比利亚姆。催化, 1984,1,364.34 A. Albert 和 E. P. Serjeant,在“电离常数的测定”中。《实验室手册》,Chapman and Hall,1971 年,伦敦,第 92-103 页,第 9 版。(化学Abstr.,1985,102,91905n)。35 R. D. B. Frazer 和 E. Susuki,Anal. Chem.,1969,41,37。36 J.M.塞维利亚、M.多明格斯、F.加西亚·布兰科和M.布拉兹克斯,计算。化学, 1989,13,197.37 D.海纳特和A.E.马爹利,J.Am.化学学会,1963,85,183。38 D. E. Metzler, C. M. Harris, R. J. Johnson, D. B. Siano, and J. A. Thomson, 生物化学, 1973,12, 5377.39 P. Fasella, C. Turano, A. Giartosio, and I. Hammady, G. Biochim., 1961, 10, 175.40 M. Arrio-Dupont,Photochem。Photobiol., 1970,12,297.41 0.Honikel 和 N. B. Madsen, J. Biol. Chem., 1972,247, 1057.42 J. W. Bridges、D. S. Davis 和 R. T. Williams,Biochem。杂志, 1966,98, 451.43 M.A.加西亚·德尔·瓦多、G.R.埃切瓦里亚、A.加西亚-埃斯帕塔莱昂、J.多诺索、F.穆伊奥兹和F.加西亚-布兰科,J.Mol.Catal.,1988,44,313。收稿日期: 1988年8月16日;纸张 8/03327G

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号