...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Nucleophilic substitution at four-co-ordinate sulphur. Mobility of the leaving group
【24h】

Nucleophilic substitution at four-co-ordinate sulphur. Mobility of the leaving group

机译:四配位硫的亲核取代。离职组的流动性

获取原文
           

摘要

468 J.C.S. Perkin I1Nucleophilic Substitution at Four-co-ordinate Sulphur. Mobility of theLeaving GroupBy Ennio Ciuffarin," Lucio Senatore,* and Mauro Isola, lstituto di Chimica Generale, Via Risorgimento 35,56100 Pisa, ItalyThe leaving group effect has been measured for the reactions of benzenesulphonyl halides with aniline, n-butyl-amine, and hydroxide ion. The specific rate constants of displacement a t 25" with I, Br, CI, and F, respectively, asleaving groups, are the following : with aniline, 3.55 x 10-2. 31 -2 x 1 0-2, 4.27 x 1 0-2, and 2-6 x 1 O-7 ; withn-butylamine, 21.9, 103,42-6, and 1-01 x I O-2; and with hydroxide ion, 43.6, 28.9.15.5. and 3.40. The almostidentical leaving group mobility of I, Br, and CI for each nucleophile and the enormous change in relative groupmobility of fluorine on changing the pK, of the nucleophile, point to a mechanism involving an intermediate complexwith bond forming or bond breaking as the rate-limiting step according to the substrate.The activation parametersare also reported and agree with this interpretation.THE neutral and alkaline hydrolysis of sulphonyl deriva-tives has been discussed in terms of S N ~ ,l S N ~ , ~ or SANmechanisms.4 The S N 1 mechanism was later dis-carded2 on various grounds. The SAN mechanism wasalso abandoned because the sulphonyl oxygen atoms donot exchange with those of water during the solvolysisand this was taken as a proof against the formation of anaddition intennediate.5 The mechanism was thusmostly considered to involve a direct displacement onsulphur, as was recently emphasized by Rogne,G sinceall the kinetic features of the reaction are in accord withan SN2 mechanism. Rogne extended the investigationto a number of nucleophiles other than water, in aqueousmedia,718 and the mechanism was identified as a nucleo-phile-catalysed hydrolysis.For reasons given in the Discussion section, we did notconsider the lack of l 8 0 exchange a sufficient proof againstan SAN mechanism in the hydrolysis of sulphonyl deriva-tives.One way to try to distinguish between a directdisplacement and one which occurs via an intermediatecomplex is to determine the relative amount of bondH. Bohme and W. Schurhoff, Chem. Ber., 1951, 84, 28;A. H. Fainberg and S. Winstein, J .Amer. Chem. SOC., 1956, 78,2770; R. V. Vizgert, Zhur. obshchei Khim., 1962, 32, 628.( a ) R. Foon and A. N. Hambly, Austral. J . Chem., 1962, 15,668; (b) R. E. Robertson, B. Rossall, S. E. Sugamori, and L.Treindl, Canad. J . CJaem., 1969, 47, 4199.H. K. Hall, jun., J . Amer. Chem. SOC., 1956, 78, 1450;F. E. Jenkins and A. N. Hambly, Austral. J . Chem., 1961, 14,190, 205.E. 34. Kosower, ' Introduction to Physical Organic Chemis-try,' Wiiey, New York, 1968, p. 65.C. A. Bunton, personal communication cited in ref. 2 ( b ) ;D. R. Christman and S. Oae, Chem. and Ind., 1959, 1251.formation and breaking in the transition state. For thispurpose the Brmnsted coefficients for the nucleophileand for the leaving group, which have been related t o theamount of bond formation and breaking, respectively,in the transition state, might be u ~ e d .~ J ~ However, thevalues reported for nucleophilic substitution at a sul-phony1 sulphur atom (0.45 for the nucleophile' and-0.6 for the leaving groupll) are not sufficient todistinguish between the two mechanisms,129 l3 and Rognelimits himself to the general remark 8 that sulphur occu-pies an intermediate position between a saturated and acarbonyl carbon atom because of the intermediate valueof the nucleophilic Brrztnsted coefficient, and the state-ment ' that such a value should indicate that sulphur,being highly polarizable, should be able to form bondsat a larger distance than carbonyl carbon which usuallygives p values close to 0.8.We report a study of the element effect 14 in nucleo-philic substitutions at four-co-ordinate sulphur. Thiseffect is related to the amount of bond breaking in thetransition state. Similar studies have already been6 0.Rogne, J . Chem. SOC. (B), 1968, 1294.0. Rogne, J . Chem. Soc. (B), 1970, 727. * 0. Rogne, J . Chem. SOC. ( B ) , 1970, 1056.R. F. Hudson, Chimia (Switz.), 1'963, 16, 173.T. C. Bruice and S. Benkovic,Benjamin, New York, 1966, chs. I and IV.Bio-organic Mechanisms,'l1 R. V. Vizgert, Zhur. obshchei Khitn., 1058, 28, 1873.l2 E. Ciuffarin, L. Senatore, and M. Isola, J . Chem. SOC. (B),13 A. R. Fersht and W. P. Jencks, J . Amev. Chem. SOG., 1970,14 J. F. Bunnett, E. W. Garbish, jun., and K. M. Pruitt, J .1971, 2187.92, 5442.Amer.Chem. SOC., 1957, 79, 3861972reported for two-co-ordinate ~ulphur.~~J6 The resultswere discussed in terms of an SAN mechnism with bondforming as the rate-limiting step. Due to the differentreactivity of suphur in the two oxidation states we ex-pected to find a different pattern of leaving groupmobilities .EXPERIMENTALMaterials.-Commercial benzenesulphonyl chloride wasfractionated under vacuum, b.p. 113-115' at 10 mmHg.Benzenesulphonyl fluoride yield 80 ; b.p. 55-58" at5 mmHg ; nDZo 1.490 (lit.,17 1.4922), benzenesulphonylbromide (yield 90; b.p. 79-80" at 1 mmHg),I8 andbenzenesulphonyl iodide yield 90 ; m.p. 4-5" (lit.,la42-45') were prepared according to reported procedures.Aniline and n-butylamine were commercial products whichwere twice distilled from potassium hydroxide pellets.Sodium hydroxide was a reagent grade commercial productand was used without further purification.Deionizedwater was distilled from potassium permanganate. Aceto-nitrile was carefully fractionated.Product Isolation.-The products could not be isolatedfrom the kinetic experiments because of the small concen-trations of substrate used. However, in the same solventmixture, reaction of all substrates in preparative amountswith each nucleophile always gave the expected product inalmost quantitative yield. Products were identified byanalyses and i.r. spectroscopy. n-Butylbenzenesulphon-amide was purified by molecular distillation. An oil wasobtained whose b.p. could not be determined.aO Benzene-sulphonanilide was purified by crystallization (ethanol),m.p.110-111' (lit.,21 108-110).Kinetics.-The reactions with n-butylamine and hydrox-ide ion were followed by U.V. spectroscopy a t the most con-venient wavelength (240-265 nm) either with a Durrumstopped-flow apparatus (for the faster reactions) or with aBeckman U.V. spectrophotometer. In each case the experi-mental infinity spectrum was identical with that of theproducts. The temperature control was better than f 0.loexcept perhaps for the reactions followed with the stopped-flow spectrophotometer above room temperature. In thelatter cases we assumed an accuracy of f0-5'. Thereactions with aniline were followed with a Metrohm E 101conductometer in a j acketted reaction vessel equipped witha platinum conductivity cell.Care was taken to avoidcontact with carbon dioxide of the air. A linear relationwas found between the conductivity and the concentrationof the aniline hydrohalides produced in the reaction.Solutions of all substrates in 90 water-acetonitrile weresufficiently stable toward hydrolysis. They were usedwithin a day after preparation. Solutions of benzenesul-phony1 chloride, bromide, and iodide in 50 acetonitrile-water react slowly but measurably with water. Thesesolutions were prepared immediately before use.All reactions were followed directly in the reaction vesselexcept those between aniline and benzenesulphonyl fluoride,which were followed by sealing portions of the reactingmixture in glass vials, which were withdrawn from thel5 E. Ciuffarin and G.Guaraldi, J . Org. Chem., 1970, 35, 2006.l8 L. Senatore, E. Ciuffarin, and L. Sagramora, J . Chem. SOG.1 7 W. Davies and J. H. Dick, J . Chem. SOG., 1931, 2104.1.3 A. C. Poshkus, J. E. Herweh, and F. A. Magnotta, J . Org.( B ) , 1971, 2191.Chein., 1963, 28, 2766.thermostat at time intervals and chilled.was then measured at 25 "C.The conductivityRESULTSThe rates of reaction of benzenesulphonyl fluoride,chloride, bromide, and iodide with aniline, n-butylamine,and hydroxide ion have been measured in aqueous aceto-nitrile. In all cases the products, in quantitative yield,were those expected for a nucleophilic substitution at sul-phur. The reaction is first order in all substrates andnucleophiles.The reactions were measured under pseudo-first-order conditions and were linear up to 90 completionexcept for the reaction of benzenesulphonyl fluoride withaniline which was followed up to 25 completion. Thedata are in Table 1.TABLE 1Velocity constants for the nucleophilic substitution ofbenzenesulphonyl halides with aniline, n-butylamine,and hydroxide ion aLeavinggroup tpcAniline 1FFc1c1c1BrBrBrIII1001080.012.6525.20.014.725.20.014.525.0n-Butylamine CF 25.0F 49.9c1 22.0c1 25.0c1 32.5Br 25.0Br 48.2I 25.0I 47.8Hydroxide ion CF 21.7F 25.0F 30.8F 48.0c1 22.2c1 25.0c1 30.8c1 48.2Br 25.0Br 30.7Br 48.0I 25.0I 47.8102Nucle ophileM50.033-05.8-1 0.511.6-16'26.7-12.35.3-10.83.2-6.23.2-5.38.5-16.616.6-22'217.A22.111.1-27.53-46-4.700.9 5-2.9 51 * 16-2-500.95-2.951 - 1 6-2.501 * 43-2.831.16-2.501.73-2.352.66-4.271.7 1-4.272.5 6-4.2 71.7 1-2-562.5 6-4.2 71.0-2.02.56-4.271.7 1-2.561.714-271-71-4.271.7 1-4-271.7 1-4-271 . 7 1 4 . 2 7k1 mol-l s-11.35 x 10-51.88 x 10-51.42 x2.54 x4.25 x10.1 x 10-220.4 x30.9 x1-05 x2.22 x 10-23.48 x1.00 x 10-24.64 x 10+38.043.052.510223721.842.02.53.55.012.613.015.321.083.527.544-643.0130220No. ofruns1133333333333553556533333332522640 Substrate concentration, 10-4-10-3~r.6 In acetonitrile-water (9 : 1). C In acetonitrile-water (1 : 1).Because of the solubility properties of the reagents, asingle solvent could not be used. 50 (w/w) Acetonitrile-water was chosen for n-butylamine and hydroxide ion (al9 F. C. Whitmore and N. Thurman, J . Amer. Chem. SOC.,2o W. Ssolonina, J . Russ. Phys. Chem. Ges., 31, 640 (Chem.*l -4. Ginzberg, B e y . , 1903, 36, 2706.1923, 45, 1068.Zentr., 1899, 11, 867)470 J.C.S. Perkin I1smaller proportion of water would not dissolve 0 . 1 ~ -sodium hydroxide). The proportion of water was decreasedto 10 for aniline in order to minimize the rate of the neutralhydrolysis for the slower reactions. The neutral hydrolysiswas in all cases much slower than the measured reactionand therefore did not influence the kinetics.The alkalinehydrolysis was also negligible at the pH values of thesolutions when aniline or n-butylamine were used as nucleo-philes.The average specific rate constants (Table 1) do notpossess the same degree of accuracy. We estimate a rangefrom a minimum of 2-3y0 for reactions with good tempera-ture control, followed up to 90 completion, and a largenumber of runs, to a maximum of 10 in other cases. Sucherrors in the rates are too small to affect the discussion inany way.Enthalpy and entropy of activation are reported inTable 2 along with the maximum error 22 (the small numberTABLE 2Activation parameters and summary of the leaving groupmobility at 25 "C for nucleophilic substitutions ofbenzenesulphonyl halides with aniline, n-butylamine,and hydroxide ionLeaving AHSa -AS$' k bgroup kcal mol-l cal K-l inol-l 1 mol-1 s-1-4niline CI; 11.1 (56)c1 6.5 (0-7)Br 6.6 (0.7)I 7.2 (0-7)n-ButylaniineF 11.4 (0.8)c1 5.1 (1.8)Br 6.3 (1.6)I 4.9 (1.6),51*4 (15.2)43.2 (2.6)38.7 (2.6)41.1 (2.6)29.5 (2.7)34.0 (6.2)28.1 (5.7)36.0 (5.7)0.26 x los64.27 x 10-231.2 x3.55 x 10-21.01 x 10-242.621.9103Hydroxide ionF 10.6 (1.4) 20.5 (4-8) 3.40c1 13.0 (1.5) 9.4 (5.1) 15-5Br 12.1 (1.6) 11.4 (5.5) 28.9I 13.0 (1-7) 7.4 (5.8) 43.6a Maximum error in parentheses. * Calculated from theactivation parameters.c In acetonitrile-water (9 : 1 ) . d Inacetonitrile-water (1 : 1).of experimental temperatures does not permit the calcula-tion of a meaningful standard deviation).However, whileto report the maximum error is sometimes of mechanisticsignificance,22 in the present case the method of jointconfidence regions 23 is more suited. Such a methodclearly shows that, while the entropy and enthalpy ofactivation of C1, Br, and I as leaving groups are the samewithin experimental error for each nucleophile, the activa-tion parameters of benzenesulphonyl fluoride are quitedifferent from those of other sulphonyl halides in all cases.DISCUSSIONThe order of the reaction and the nature of theproducts show that a nucleophilic displacement onsulphur occurs. In the alkaline hydrolysis, which was22 K. B. Wiberg, ' Physical Organic Chemistry,' Wiley, New23 J.Mandel and F. J. Linnig, Analyt. Chem., 1957, 29, 743.1-ork, 1964, pp. 377-379.already identified as a nucleophilic displacement onthe displacement yields the products directlyequation (l). With amines as nucleophiles the re-OH- + ArSO,*X ArSO,*OH + X- (1)R2NH + ArSO,*X --t ArSO,*hHR, + X- (2) A k ArS0,H + R,NH ArSO,*N R,- H - b -Hfaction involves the formation of an unstable sulphonyl-ammonium intermediate equation (2) .i Such anintermediate can either lose a proton to give the corre-sponding ~ulphonamide,~~ or be attacked by water (inaqueous media) to give hydrolysis products.i Whentertiary amines are used, owing to the absence of hydro-gen on the nucleophilic nitrogen atom, only hydrolysisproducts are observed.i When primary or secondaryamines 25 are used, both reactions are possible.How-ever, the fact that the sulphonamides are obtained inquantitative yield indicates that loss of a proton is amuch faster process than attack by water (already con-sidered a fast step '). Thus, the sulphonylammoniumintermediate does not revert to the starting materialsand in each case the reaction is a simple displacement onsulphur. The leaving group mobilities are thereforedirectly related to the first step of the nucleophilic sub-stitution.The leaving group mobility of benzenesulphonylchloride and fluoride in neutral and alkaline hydrolysishas already been measured by Swain and Theydiscussed the kcl : kF ratio of neutral hydrolysis for aseries of substrates in terms of a larger tendency forbond breaking giving a larger kcl : kF ratio.The ratiofor the benzenesulphonyl derivatives is quite large(443 x lo3); therefore the reaction was considered toproceed with a large degree of bond breaking.24 Thekcl: kF ratio for alkaline hydrolysis 24 was found to bemuch smaller (ca. S), an indication that bond breakingis much less pronounced in this case. In the case ofalkaline hydrolysis of benzoyl halides, where the fluoridereacts faster than the chloride, Swain and Scott suggestedthat fluorine facilitates the formation of the bond withthe nucleophile by making the electrophilic centre moreelectron-deficient and positive .24 These ideas are similarto those expressed by Bunnett on the ' element effect '.14However, the element effect can give more detailedinformation because the number of leaving groupsis not limited to two.Swain and Scott's data are inagreement with ours but are insufficient for a com-prehensive discussion of the element effect on sul-phonyl sulphur. For example, the Kcl : k= ratio meas-ured by Swain and Scott for neutral hydrolysis of sul-phonyl halides suggests large bond breaking in the transi-tion state for both leaving groups. Consideration ofmore than two leaving groups shows that, while bond24 G. Swain and C. G. Scott, J . Anzev. Chem. Soc., 1953, 75,25 J. F. Bunnett and J. Y . Bassett, jun., J . Amev. Chem. SOG.,246.1959, 81, 2104; J . Org. Chem., 1962, 27, 23461972 471breaking in the transition state is extensive for thefluoride, it is much less pronounced for the chloride.Table 2 shows that the leaving group mobilities of I,Br, and C1 for each nucleophile are almost identical.The maximum relative mobility changes from 2.8 forhydroxide ion, to 4.7 for n-butylamine, to 8.8 for aniline.On the other hand the relative mobility of fluorine changeson changing the nucleophile.The ka : kF ratios forhydroxide ion, n-butylamine, and aniline, are 4-6, 4.2 xlo3, and 1-65 x lo5. The slight variation relative to theKc, : kF ratio previously determined for the alkalinehydrolysis in aqueous acetone 24 can be attributed to thedifferent solvent. Clearly, on changing the nature ofthe nucleophile, the strength of the S-F bond influencesthe reaction rate to a very different degree.Breakingof the S-F bond is important for aniline and becomes lessimportant for n-butylamine until for hydroxide ion it isalmost of no importance. For the three other leavinggroups on the other hand the strength of the S-halogenbond is always unimportant.The leaving group mobility in the various cases isparalleled by the activation parameters (Table 2).Entlialpies and entropies of activation are the samewithin experimental error for chlorine, bromine, andiodine as leaving groups (considered separately for eachnucleophile). Fluorine has in each case quite differentactivation parameters.The relative mobility and the activation parametersfor the different leaving groups can be accounted for onlyby an SAIN mechanism, which, depending on the leavinggroup, allows either bond forming or bond breaking asthe rate-limiting step.14 Bond forming is the ratelimiting step with all nucleophiles for benzenesulphonylchloride, bromide, and iodide as shown by the almostidentical rate and activation parameters. When thismechanism is operative, the rate of reaction is little in-fluenced by the S-X bond strength.Benzenesulphonylfluoride on the other hand, reacts via an SAN mechanismwith bond breaking as the rate-limiting step as shown bythe different mobilities of fluorine with various nucleo-pliiles. The variation in activation parameters onchanging the pK, value of the nucleophile cannot beeasily interpreted. However, an interesting feature isthe difference in reaction rate between benzenesulphonylfluoride and the other sulphonyl halides, which becomessmaller, the higher the pK, values of the nucleophile.The decomposition of the intermediate towards reagentsor products depends on the relative basicity of nucleo-pliile and leaving group. A nucleophile of higher pK,value is a relatively worse leaving group.Thus, thedecomposition of the intermediate changes from largelyexclusive return to reagents for the reaction of benzene-sulphonyl fluoride with aniline, to a more balanced situa-tion on increasing the pK, value of the nucleophile.A comment about the difference in mobility of I, Br,and C1 found for two- 1 5 9 1 6 and four-co-ordinate sulphur26 I;. -4. Cotton and G. Wilkinson, ' Advanced InorganicChcinistry,' Interscience, Ncw York, 1967, p.402; E. Ciuffarinand .I. Fava, Pvogv. Phys. Ovg. Chew., 1968, 6, 81.seems in order. For sulphenyl sulphur, larger ratios ofleaving group mobilities were found (400 in one case)and the order of leaving group mobility follows theelectronegativity. However, we have assumed for bothtypes of sulphur that iodine, bromine, and chlorine arealmost fully bound to the sulphur atom in the transitionstate. Clearly, while the electronegativity is quite im-portant for two-co-ordinate sulphur, the incomingnucleophile is not affected by it in reactions at sulphonylsulphur where the order of leaving group mobility isdetermined both by the (small) influence of the electro-negativity and by stretching of the S-halogen bond inthe transition state, as shown by the slight inversion inleaving group mobility on changing the nucleophile.As far as two-co-ordinate sulphur is concerned, the in-fluence of a small S-X stretching in the transition stateis overwhelmed by the electronegativity of the leavinggroup, which influences the formation of the inter-mediate much more easily through the much morepolarizable sulphenyl sulphur atomThe Bronsted coefficient for the leaving group meas-ured by Vizgert l1 for alkaline hydrolysis of para-substituted phenyl benzenesulphonates (@ -0.6) shouldbe an indication of fairly large bond breaking in thetransition state.However, we have suggested l6 thatfor reactions which occur via an intermediate complexwith bond making as the rate limiting step, f3 valuesmight be linked to the ability of the leaving group tofacilitate the formation of the intermediate complex.One of the reasons put forward to exclude an inter-mediate complex in the solvolysis of benzenesulphonylderivatives was the absence of l80 exchange betweensubstrate and solvent during the rea~tion.~ However, amechanism which assumes the fast decomposition of theintermediate to products cannot give rise to exchangeof solvent with nucleophile since the intermediate neverreturns to starting materials.Such an exchange mightbe observed in the hydrolysis of benzenesulphonylfluoride, since in this case the intermediate decomposesmore easily to reagents than to products. However,in the trigonal bipyramidal intermediate the enteringand leaving groups lie in apical positions while thesulphonyl oxygen atoms and the remainder of themolecule lie in radial positions.26 Since the two positionsare not equivalent, in order to observe exchange withoutcontradicting the principle of microscopic reversibility,another condition must be fulfilled. The intermediatemust pseudorotate before reverting to reagents. Up tonow, pseudorotation, while very common for phos-p h o r ~ ~ , ~ ~ has not been observed with sulphur sub-strates. Thus, the l80 exchange experiments, whileindicative of intermediate formation when they arepositive, are inconclusive when they are negative.This investigation was supported by C.N.R., Rome.1/1304 Received, 27th JuZy, 1971)2 i E. A. Dennis and F. H. Westheimer, J . Amev. Chem. Soc.,28 R. Tang and K. Alislow, J . Amev. Chew?. Soc., 1969, 91,1966, 88, 3431 ; 3432.5644
机译:468 J.C.S. Perkin I1四配位硫的亲核取代。离开组的流动性作者:Ennio Ciuffarin,“ Lucio Senatore,* 和 Mauro Isola, lstituto di Chimica Generale, Via Risorgimento 35,56100 Pisa, Italy已经测量了苯磺酰卤化物与苯胺、正丁胺和氢氧根离子的反应的离开基团效应。位移 a t 25“ 的比速率常数分别为 I、Br、CI 和 F,作为分离基团,如下所示:苯胺,3.55 x 10-2。31 -2 x 1 0-2、4.27 x 1 0-2 和 2-6 x 1 O-7 ;含丁胺,21.9、103、42-6 和 1-01 x I O-2;与氢氧根离子,43.6,28.9.15.5。和 3.40。每种亲核试剂的 I、Br 和 CI 的离去基迁移率几乎相同,氟的相对基团迁移率在改变亲核试剂的 pK 时发生巨大变化,表明了一种涉及中间复合物的机制,根据底物,键形成或键断裂作为限速步骤。激活参数也被报告并同意这种解释。磺酰衍生物的中性和碱性水解已从S N~,l S N~,~或SAN机制4中讨论过,S N 1机制后来因各种原因被丢弃2.SAN机理也被放弃了,因为在溶剂分解过程中磺酰氧原子不与水的氧原子交换,这被认为是防止形成加成烯酸酯的证据。5 因此,该机理主要被认为涉及硫的直接置换,正如 Rogne,G 最近强调的那样,因为反应的所有动力学特征都与 SN2 机理一致。Rogne将研究扩展到水介质中除水以外的许多亲核试剂,718,其机制被确定为亲核催化的水解。由于讨论部分给出的原因,我们认为缺乏 l 8 0 交换不足以证明磺酰衍生物水解中的 SAN 机理。尝试区分直接置换和通过中间复合物发生的置换的一种方法是确定键 H 的相对量。Bohme and W. Schurhoff, Chem. Ber., 1951, 84, 28;A. H. Fainberg and S. Winstein, J .Amer. Chem. SOC., 1956, 78,2770;R. V. Vizgert,朱尔。obshchei Khim., 1962, 32, 628.( a ) R. Foon 和 A. N. Hambly, Austral. J .化学, 1962, 15,668;(b) R. E. Robertson, B. Rossall, S. E. Sugamori, and L.Treindl, Canad. J .CJaem., 1969, 47, 4199.H. K. Hall, jun., J .Amer. Chem. SOC., 1956, 78, 1450;F. E. Jenkins and A. N. Hambly, Austral. J .化学, 1961, 14,190, 205.E. 34.Kosower, 'Introduction to Physical Organic Chemis-try', Wiiey, New York, 1968, p. 65.C. A. Bunton, personal communication cited in ref. 2 ( b ) ;D.R. Christman 和 S. Oae, Chem. and Ind., 1959, 1251.transition state 中的形成和断裂。为此,亲核剂和离去基团的 Brmnsted 系数分别与过渡态的键形成量和断裂量有关,可能为 u ~ e d .~ J ~ 然而,报告的 sul-phony1 硫原子的亲核取代值(亲核试剂为 0.45,离去组为 -0.6)不足以区分这两种机制,129 l3 和 Rogne将自己限制在一般评论 8 中,硫占据了饱和碳原子和羰基碳原子之间的中间位置,因为亲核 Brrztnsted 系数的中间值,并且这样的值应该表明硫具有高度极化性,应该能够比羰基碳形成更远的键,而羰基碳通常给出接近 0.8 的 p 值。四配位硫的亲核取代。这种效应与过渡状态下的键断裂量有关。类似的研究已经有6 0.Rogne, J .化学 SOC. (B), 1968, 1294.0.罗格尼,J .化学学会 (B), 1970, 727.* 0.罗格尼,J .Chem. SOC. ( B ) , 1970, 1056.R. F. Hudson, Chimia (Switz.), 1'963, 16, 173.T. C. Bruice and S. Benkovic,Benjamin, New York, 1966, chs.I 和 IV.生物有机机制,'l1 R. V. Vizgert, Zhur.obshchei Khitn., 1058, 28, 1873.l2 E. Ciuffarin, L. Senatore, and M. Isola, J .化学 SOC. (B),13 A. R. Fersht 和 W. P. Jencks, J .阿梅夫。Chem. SOG., 1970,14 J. F. Bunnett, E. W. Garbish, jun., and K. M. Pruitt, J .1971, 2187.92, 5442.Amer.Chem.SOC., 1957, 79, 3861972报道了双坐标~ulphur.~~J6 结果以键合成形为限速步骤的SAN机械进行了讨论。由于 suphur 在两种氧化态中的反应性不同,我们探索了不同的离开基团迁移模式。实验材料-商用苯磺酰氯在真空下分馏,b.p.113-115',10 mmHg.苯磺酰氟[产率80%;b.p.55-58“,5 mmHg;nDZo 1.490(lit.,17 1.4922)],苯磺酰溴(产率90%;b.p.79-80”,1 mmHg),I8和苯磺酰碘[产率90%;熔点4-5“(lit.,la42-45')]根据报告的程序制备。苯胺和正丁胺是从氢氧化钾颗粒中蒸馏两次的商业产品。氢氧化钠是一种试剂级商业产品,无需进一步纯化即可使用。去离子水由高锰酸钾蒸馏而成。乙酰腈被仔细分馏。产品分离-由于所用底物的浓度很小,因此无法将产物从动力学实验中分离出来。然而,在相同的溶剂混合物中,制备量的所有底物与每种亲核试剂的反应总是给预期产物带来几乎定量的产物。通过分析和红外光谱法鉴定产品。正丁基苯磺酰胺采用分子蒸馏法提纯。得到一种b.p.不能 determined.aO 苯磺酰苯胺的油,通过结晶(乙醇)提纯,m.p.110-111'(lit.,21 108-110)。动力学:与正丁胺和羟基离子的反应之后,使用Durrum停止流动装置(用于更快的反应)或Beckman紫外分光光度计进行最方便的波长(240-265nm)的紫外光谱。在每种情况下,经验-心理无限光谱都与产品相同。温度控制优于f 0.lo,除了室温以上的停流分光光度计所进行的反应。在后一种情况下,我们假设精度为 f0-5'。然后用瑞士万通E 101电导仪在装有铂电导池的反应容器中与苯胺作用。注意避免与空气中的二氧化碳接触。在反应中产生的苯胺卤化物的电导率和浓度之间发现线性关系。所有底物在90%水-乙腈中的溶液在水解时都足够稳定。它们在制备后一天内使用。苯磺酰胺1氯化物、溴化物和碘化物在50%乙腈水中的溶液与水反应缓慢但可测量。这些溶液在使用前立即制备。除苯胺和苯磺酰氟之间的反应外,所有反应均直接在反应容器中进行,随后将反应混合物的部分密封在玻璃瓶中,从玻璃瓶中取出5 E. Ciuffarin 和 G.Guaraldi, J.Org. Chem., 1970, 35, 2006.l8 L. Senatore, E. Ciuffarin, and L. Sagramora, J .Chem. SOG.1 7 W. Davies 和 J. H. Dick, J .Chem. SOG., 1931, 2104.1.3 A. C. Poshkus, J. E. Herweh, and F. A. Magnotta, J .Org.( B ) , 1971, 2191.Chein., 1963, 28, 2766.在25“C下测定温度间隔并冷却,电导率结果苯磺酰氟、氯化物、溴化物和碘化物与苯胺、正丁胺和氢氧根离子的反应速率在乙酰腈水溶液中测定.在所有情况下,定量产物的产物都是硫磺亲核取代的预期产物。该反应在所有底物和亲核试剂中都是一级的。反应在伪一级条件下测量,除苯磺酰氟与苯胺反应外,反应完成度为90%,完成度为25%。数据见表1.表1苯磺酰卤化物与苯胺、正丁胺和氢氧根离子aLeavinggroup tpc苯胺1FFc1c1c1BrBrBrIII1001080.012.6525.20.014.725.20.014.525.0n-丁胺CF 25.0F 49.9c1 22.0c1 25.0c1 32.5Br 25.0Br 48.2I 25.0I 47.8氢氧根离子CF 21.7F 25.0F 30.8F 48.0c1 22.2c1 25.0c1 30.8c1 48.2Br 25.0Br 30.7Br 48.0I 25.0I 47.8102[亲核]M50.033-05.8-1 0.511.6-16'26.7-12.35.3-10.83.2-6.23.2-5.38.5-16.616.6-22'217.A22.111.1-27.53-46-4.700.9 5-2.9 51 * 16-2-500.95-2.951 - 1 6-2.501 * 43-2.831.16-2.501.73-2.352.66-4.271.7 1-4.272.5 6-4.2 71.7 1-2-562.5 6-4.2 71.0-2.02.56-4.271.7 1-2.561.714-271-71-4.271.7 1-4-271.7 1-4-271 .7 1 4 .2 7K1 Mol-L S-11.35 x 10-51.88 x 10-51.42 x2.54 x4.25 x10.1 x 10-220.4 x30.9 x1-05 x2.22 x 10-23.48 x1.00 x 10-24.64 x 10+38.043.052.510223721.842.02.53.55.012.613.015.321.083.527.544-643.0130220号ofruns11333333333335535535653333332522640底物浓度,10-4-10-3~r.6在乙腈水中(9:1)。C 在乙腈水中(1:1)。由于试剂的溶解性,不能使用单一溶剂。正丁胺和氢氧根离子(al9 F. C. Whitmore 和 N. Thurman, J . Amer. Chem. SOC.,2o W. Ssolonina, J . Russ. Phys. Chem. Ges., 31, 640 (Chem.*l -4.金兹伯格,B e y ., 1903, 36, 2706.1923, 45, 1068.Zentr., 1899, 11, 867)470 J.C.S. Perkin I1较小比例的水不会溶解 0 .1~-氢氧化钠)。苯胺的水比例降低到10%,以尽量减少较慢反应的中水解速率。在所有情况下,中性水解都比测得的反应慢得多,因此不影响动力学。当苯胺或正丁胺用作亲核试剂时,碱水解在溶液的pH值下也可以忽略不计。平均比速率常数(表1)不具有相同的精度。我们估计范围从温度控制良好的反应的最小 2-3y0,后续完成率达到 90%,运行次数大,其他情况下最大为 10%。费率中的此类错误太小,无法以任何方式影响讨论。表2报告了活化的焓和熵以及最大误差22(小数表22苯磺酰卤化物与苯胺、正丁胺和氢氧根离子的亲核取代的活化参数和离基迁移率在25“C处的活化参数和总结离AHSa -AS$' k bgroup kcal mol-l cal K-l inol-l 1 mol-1 s-1-4niline CI;11.1 (56)c1 6.5 (0-7)溴 6.6 (0.7)I 7.2 (0-7)正丁基苯胺F 11.4 (0.8)c1 5.1 (1.8)溴 6.3 (1.6)I 4.9 (1.6),51*4 (15.2)43.2 (2.6)38.7 (2.6)41.1 (2.6)29.5 (2.7)34.0 (6.2)28.1 (5.7)36.0 (5.7)0.26 x los64.27 x 10-231.2 x3.55 x 10-21.01 x 10-242.621.9103氢氧化物离子F 10.6 (1.4) 20.5 (4-8) 3.40c1 13.0 (1.5) 9.4 (5.1) 15-5Br 12.1 (1.6) 11.4 (5.5) 28.9I 13.0 (1-7) 7.4 (5.8) 43.6a 括号内的最大误差。* 根据活化参数计算.c 在乙腈-水 (9 : 1 ) 中。d 乙腈-水 (1 : 1).的实验温度不允许计算有意义的标准偏差)。然而,虽然报告最大误差有时具有机械意义,22 在本例中,联合置信区 23 的方法更适合。该方法清楚地表明,虽然C1、Br和I作为离去基团的活化熵和活化焓在每种亲核试剂的实验误差内相同,但苯磺酰氟的活化参数在所有情况下都与其他磺酰卤化物的活化参数有很大差异。讨论反应的顺序和产物的性质表明硫上发生了亲核置换。在碱性水解中,这是 22 K. B. Wiberg,“物理有机化学”,Wiley,New23 J.Mandel 和 F. J. Linnig,分析。Chem., 1957, 29, 743.1-ork, 1964, pp. 377-379.已被鉴定为置换上的亲核置换直接产生产物[方程(l)]。以胺为亲核试剂,re-OH- + ArSO,*X ArSO,*OH + X- (1)R2NH + ArSO,*X --t ArSO,*hHR, + X- (2) A k ArS0,H + R,NH ArSO,*N R,- H - b -Hfaction 涉及不稳定磺酰铵中间体的形成 [方程 (2)] .i 这种中间体可以失去一个质子来产生相应的 ~ulphonamide,~~ 或者被水(含水介质)侵蚀以产生水解产物.i 当使用叔胺时, 由于亲核氮原子上没有氢,因此仅观察到水解产物。无论如何,磺胺类药物获得非定量产率的事实表明,质子的损失比水的攻击要快得多(已经是一个快速的步骤)。因此,磺基铵中间体不会恢复为起始原料,并且在每种情况下,反应都是硫的简单置换。因此,离去基团迁移率与亲核取代的第一步直接相关。苯磺酰氯和氟化物在中性和碱性水解中的离去基迁移率已经通过Swain测量,他们讨论了一系列底物的中性水解的kcl:kF比,从较大的键断裂趋势的角度,给出更大的kcl:kF比。苯磺酰衍生物的比例相当大(>443 x lo3);因此,该反应被认为是进行很大程度的键断裂.24 发现碱性水解 24 的 kCl:kF 比值要小得多(约 S),这表明在这种情况下键断裂不那么明显。在苯甲酰卤化物的碱性水解情况下,氟化物的反应速度比氯化物快,Swain和Scott认为氟通过使亲电中心更加缺电子和正来促进与亲核试剂键的形成.24这些想法类似于Bunnett在“元素效应”上表达的想法。14但是,元素效应可以提供更详细的信息,因为离开组的数量不限于两个。Swain和Scott的数据与我们的数据不一致,但不足以全面讨论元素对硫磺的影响。例如,Swain 和 Scott 测量的 Kcl : k= 比值用于磺酰卤化物的中性水解表明,两个离开基团在过渡态中都存在较大的键断裂。对两个以上离开组的考虑表明,虽然邦德24 G. Swain 和 C. G. Scott, J .安泽夫。Chem. Soc., 1953, 75,25 J. F. Bunnett and J. Y .巴塞特,君,J .阿梅夫。SOG.,246.1959, 81, 2104;J .Org. Chem., 1962, 27, 23461972 471 过渡态的断裂对于氟化物来说是广泛的,而对于氯化物来说则不那么明显。表 2 显示,每种亲核试剂的 I、Br 和 C1 的离去基迁移率几乎相同。最大相对迁移率从氢氧根离子的2.8变为正丁胺的4.7,再到苯胺的8.8。另一方面,氟的相对迁移率随着亲核试剂的变化而变化。氢氧根离子、正丁胺和苯胺的 ka:kF 比分别为 4-6、4.2 xlo3 和 1-65 x lo5。相对于先前确定的用于在丙酮水溶液中碱性水解的Kc:kF比的微小变化24可归因于溶剂的不同。显然,在改变亲核试剂的性质时,S-F键的强度对反应速率的影响程度非常不同。S-F键的断裂对苯胺很重要,对正丁胺变得不那么重要,直到对氢氧根离子几乎不重要。另一方面,对于其他三个离开基团,S-卤素键的强度始终不重要。在各种情况下,离开组的迁移率与激活参数平行(表2)。在氯、溴、碘的实验误差中,活化熵与离去基团相同(每种亲核试剂分别考虑)。在每种情况下,氟都具有完全不同的活化参数。不同离去基团的相对迁移率和活化参数只能由SAIN机制来解释,根据离去基团的不同,该机制允许键形成或键断裂作为限速步骤.14键形成是苯磺酰氯、溴化物和碘化物的所有亲核试剂的限速步骤,如几乎相同的速率和活化参数所示。当这种机制起作用时,反应速率受 S-X 键强度的影响很小。另一方面,苯磺酰氟通过 SAN 机制反应,以断键为限速步骤,如氟与各种核分子的不同迁移率所示。亲核试剂的pK值变化的活化参数的变化不容易解释。然而,一个有趣的特征是苯磺酰氟与其他磺酰卤化物之间的反应速率差异,亲核试剂的pK值越高,反应速率越小。中间体对试剂产物的分解取决于核铮和离去基团的相对碱度。pK值较高的亲核试剂是相对较差的离去基团。因此,中间体的分解从苯磺酰氟与苯胺反应的试剂的排他性大范围变化,转变为增加亲核试剂的pK值的更平衡的场所。关于 I、Br 和 C1 的迁移率差异的评论发现 2- 1 5 9 1 6 和四坐标硫26 I;。-4.Cotton 和 G. Wilkinson,“高级无机植物学”,Interscience,Ncw York,1967 年,第 402 页;E. Ciuffarinand .I. 蚕豆,Pvogv。Phys. Ovg.Chew., 1968, 6, 81.似乎有序。对于硫苯硫,发现较大的离去基迁移率(1例为400),并且离基迁移率的顺序遵循电负性。然而,对于这两种类型的硫,我们假设碘、溴和氯在过渡态几乎完全结合到硫原子上。显然,虽然电负性对于双配位硫来说非常重要,但在磺酰硫的反应中,进入的亲核试剂不受它的影响,其中离开基团迁移率的顺序由电负性的(小)影响和过渡态中 S-卤素键的拉伸决定,如改变亲核试剂时留下基团迁移率的轻微反转所示。就双配位硫而言,在过渡态中拉伸的小 S-X 的进气被离基的电负性所淹没,这更容易通过更具极性的磺基硫原子影响中间体的形成Vizgert l1 测量的对位取代苯基苯磺酸盐碱性水解的离去基的 Bronsted 系数 (@ -0.6) 应该表明键断裂相当大处于过渡状态。然而,我们提出 l6 对于通过中间配合物发生的反应,以键形成为限速步骤,f3 值可能与离开基团促进中间配合物形成的能力有关。在苯磺酰衍生物的溶剂分解中排除中间体络合物的原因之一是在rea~tion过程中底物和溶剂之间没有l80交换。~ 然而,假设产物中间体快速分解的机制不能引起溶剂与亲核试剂的交换,因为中间体永远不会返回起始材料。在苯磺酰氟的水解中可以观察到这种交换,因为在这种情况下,中间体更容易分解为试剂而不是产物。然而,在三角双锥体中间体中,进入和离开基团位于顶端位置,而磺基氧原子和其余的磺基氧原子位于径向位置.26由于这两个位置不等价,为了在不违背微观可逆性原理的情况下观察交换,必须满足另一个条件.中间体在恢复试剂之前必须进行伪旋转。到目前为止,赝旋虽然在磷-p h o r ~ ~ , ~ ~ 中很常见,但在硫基质中尚未观察到.% 因此,l80 交换实验虽然在阳性时表明中间形成,但当它们为阴性时则不确定。这项调查得到了罗马C.N.R.的支持。[1/1304 收稿日期,1971 年 7 月 27 日)2 i E. A. Dennis 和 F. H. Westheimer, J .阿梅夫。Chem. Soc.,28 R. Tang 和 K. Alislow, J .阿梅夫。嚼?。Soc., 1969, 91,1966, 88, 3431 ;3432.5644

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号