首页> 外文期刊>International Journal of Greenhouse Gas Control >CO2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling
【24h】

CO2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling

机译:圣劳伦斯低地沉积盆地(加拿大魁北克)的二氧化碳封存和潜在的断层不稳定性:来自储层-地质力学耦合模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Coupled reservoir-geomechanical (TOUGH-FLAC) modeling is applied for the first time to the St. Lawrence Lowlands region to evaluate the potential for shear failure along pre-existing high-angle normal faults, as well as the potential for tensile failure in the caprock units (Utica Shale and Lorraine Group). This activity is part of a general assessment of the potential for safe CO2 injection into a sandstone reservoir (the Covey Hill Formation) within an Early Paleozoic sedimentary basin. Field and subsurface data are used to estimate the sealing properties of two reservoir-bounding faults (Yamaska and Champlain faults). The spatial variations in fluid pressure, effective minimum horizontal stress, and shear strain are calculated for different injection rates, using a simplified 2D geological model of the Becancour area, located similar to 110 km southwest of Quebec City. The simulation results show that initial fault permeability affects the timing, localization, rate, and length of fault shear slip. Contrary to the conventional view, our results suggest that shear failure may start earlier for a permeable fault than for a sealing fault, depending on the site-specific geologic setting. In simulations of a permeable fault, shear slip is nucleated along a 60 m long fault segment in a thin and brittle caprock unit (Utica Shale) trapped below a thicker and more ductile caprock unit (Lorraine Group) - and then subsequently progresses up to the surface. In the case of a sealing fault, shear failure occurs later in time and is localized along a fault segment (300 m) below the caprock units. The presence of the inclined low-permeable Yamaska Fault close to the injection well causes asymmetric fluid-pressure buildup and lateral migration of the CO2 plume away from the fault, reducing the overall risk of CO2 leakage along faults. Fluid-pressure-induced tensile fracturing occurs only under extremely high injection rates and is localized below the caprock units, which remain intact, preventing upward CO2 migration
机译:首次将油藏-地质力学(TOUGH-FLAC)耦合模型应用于圣劳伦斯低地地区,以评估沿已存在的高角度法向断层的剪切破坏的可能性,以及沿岩心的拉伸破坏的可能性。盖层单位(尤蒂卡页岩和洛林集团)。此项活动是对古生代早期沉积盆地内砂岩储层(科维山地层)中安全注入二氧化碳潜力进行总体评估的一部分。现场和地下数据用于估算两个储层边界断层(雅马斯卡和尚普兰断层)的封闭性。使用Becancour地区的简化2D地质模型(类似于魁北克市西南110公里),针对不同的注入速率计算了流体压力,有效最小水平应力和剪切应变的空间变化。仿真结果表明,初始断层渗透率会影响断层剪切滑移的时机,位置,速率和长度。与传统观点相反,我们的结果表明,取决于现场特定的地质环境,可渗透断层的剪切破坏可能比密封断层的剪切破坏开始得早。在可渗透断层的模拟中,剪切滑移沿一个60 m长的断层段成核,位于一个较薄且脆性的盖层单元(Utica页岩)中,该单元位于一个更厚,更易延展的盖层单元(洛林群)的下面,然后继续向上发展到表面。在发生密封故障的情况下,剪切破坏会在较晚的时间发生,并沿盖层单元下方的断层段(300 m)定位。靠近注入井的倾斜的低渗透雅马斯卡断层的存在会导致不对称的流体压力累积和CO2羽流从断层处横向迁移,从而降低了沿断层泄漏CO2的总体风险。流体压力引起的拉伸压裂仅在极高的注入速率下发生,并且位于盖层单元下方,并保持完整,从而防止了向上的二氧化碳迁移

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号