首页> 外文期刊>International Journal of Fracture >Distributed dislocation approach for cracks in couple-stress elasticity: shear modes
【24h】

Distributed dislocation approach for cracks in couple-stress elasticity: shear modes

机译:耦合应力弹性裂纹的分布错位方法:剪切模式

获取原文
获取原文并翻译 | 示例
           

摘要

The distributed dislocation technique proved to be in the past an effective approach in studying crack problems within classical elasticity. The present work aims at extending this technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting for effects of microstructure. As a first step, the technique is introduced to study finite-length cracks under remotely applied shear loadings (mode II and mode III cases). The mode II and mode III cracks are modeled by a continuous distribution of glide and screw dislocations, respectively, that create both standard stresses and couple stresses in the body. In particular, it is shown that the mode II case is governed by a singular integral equation with a more complicated kernel than that in classical elasticity. The numerical solution of this equation shows that a cracked material governed by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a material governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably higher than the one predicted by classical elasticity. Finally, in the mode III case the corresponding governing integral Mechanics Division, National Technical University of Athens, Zographou Campus, Zographou, 15773, Greece equation is hypersingular with a cubic singularity. A new mechanical quadrature is introduced here for the numerical solution of this equation. The results in the mode III case for the crack-face displacement and the near-tip stress show significant departure from the predictions of classical fracture mechanics.
机译:过去,分布式位错技术被证明是研究经典弹性范围内的裂纹问题的有效方法。本工作旨在将该技术扩展到研究偶应力弹性内的裂纹问题,即研究微观结构影响的理论内。第一步,引入该技术来研究在远程施加的剪切载荷(模式II和模式III情况)下的有限长度裂纹。 II型和III型裂纹分别通过滑移和螺钉位错的连续分布来建模,这会在体内产生标准应力和耦合应力。特别地,表明模式II情况是由具有比经典弹性中的核更复杂的核的奇异积分方程控制的。该方程的数值解表明,与偶数弹性控制的材料相比,由偶应力弹性控制的破裂材料的行为更刚性(具有增加的刚度)。而且,裂纹尖端区域的应力水平明显高于经典弹性预测的应力水平。最后,在模式III的情况下,雅典国立技术大学相应的控制积分力学部门,Zographou校园,Zographou,15773,希腊方程是超奇异的,具有三次奇异性。这里引入了一个新的机械正交方程来求解该方程。在III型情况下,裂纹面位移和近端应力的结果表明与经典断裂力学的预测有很大的出入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号