首页> 外文期刊>Journal of geophysical research >Seasonal and local time variation of ionospheric migrating tides in 2007-2011 FORMOSAT-3/COSMIC and TIE-GCM total electron content
【24h】

Seasonal and local time variation of ionospheric migrating tides in 2007-2011 FORMOSAT-3/COSMIC and TIE-GCM total electron content

机译:Seasonal and local time variation of ionospheric migrating tides in 2007-2011 FORMOSAT-3/COSMIC and TIE-GCM total electron content

获取原文
获取原文并翻译 | 示例
           

摘要

This study examines the seasonal and interannual variation of the major migrating tidal components in midlatitude to low-latitude total electron content (TEC) observations from the FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) satellite constellation from 2007 to 2011. Although the absolute amplitudes of the TEC zonal mean and migrating tidal components show a strong positive relation to the increasing and decreasing phases of the solar cycle, the relative tidal amplitudes following normalization by maximum background values show a more varied response to solar activity levels. Features of ionospheric local time variation produced by individual migrating tidal components are consistent from year to year, with DW1 forming the equatorial daytime peak in TEC, SW2 corresponding to the generation of the equatorial ionization anomaly (EIA) crests, and TW3 contributing to the TEC trough between the EIA crests. Numerical experiments using Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) are also performed to determine the sensitivity of the ionospheric migrating tides to upward propagating migrating tidal components from the neutral mesosphere and lower thermosphere (MLT). Zonal mean TECs decrease when MLT tidal forcing is applied and are particularly sensitive to the MLT DW1. Most of the ionospheric SW2 response is attributable to MLT SW2 forcing, enhancing the EIA crests by amplifying the equatorial fountain. TW3 in the model is generated through both in situ photoionization and nonlinear interaction between DW1 and SW2.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号