...
首页> 外文期刊>Journal of Applied Physics >Effects of absorption and desorption on the chemical stress field
【24h】

Effects of absorption and desorption on the chemical stress field

机译:Effects of absorption and desorption on the chemical stress field

获取原文
获取原文并翻译 | 示例

摘要

The present work studies the effects of absorption and desorption on the chemical stress field in a membrane during permeation or both-side charging of a diffusing species. The permeation and both-side charging processes are analyzed with the consideration of the absorption and desorption processes, wherein the flux continuity boundary conditions are adopted. The results show that the chemical stresses are compressive near the surfaces and tensile in the center of the membrane. The maximum magnitude of stress occurs at the entry surface for the permeation process and at both surfaces for the both-side charging process. For the permeation process, the compressive stress at the entry surface increases with time to a maximum and then decreases with time gradually to zero. A similar phenomenon is found at both surfaces in the both-side charging process. In both processes, the stress magnitude depends upon the ratio of the drift velocity through surface to the drift velocity through bulk. When this ratio approaches infinity, the flux continuity boundary conditions reduce to the concentration boundary condition and the highest chemical stress field will be produced. Therefore, reducing the drift velocity through surface would be an efficient means to reduce the strength of the chemical stress. In general, designed surface alloying can introduce diffusing species traps at the surfaces of a membrane, which may efficiently decrease the drift velocity through surface.

著录项

  • 来源
    《Journal of Applied Physics 》 |2002年第4期| 2002-2008| 共7页
  • 作者单位

    Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;

    rovidence.org;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学 ;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号