首页> 外文期刊>journal of chemical physics >Distribution of reaction products (theory). VIII. Clplus;HI, Clplus;DI
【24h】

Distribution of reaction products (theory). VIII. Clplus;HI, Clplus;DI

机译:Distribution of reaction products (theory). VIII. Clplus;HI, Clplus;DI

获取原文
           

摘要

The dynamics of the thermal (300deg;K) reactionsClplus;HIrarr;ClHplus;IandClplus;DIrarr;ClDplus;Ihave been examined by the classical trajectory method, in 3D. The Clplus;HI reaction has also been studied at an enhanced (6 kcal moleminus;1) collision energy. The potentialhyphen;energy hypersurface was the same as that used earlier J. Chem. Phys.49,5189 (1968). Though it is a highly repulsive energy surface it is able to account for the efficient vibrational excitation of the molecular product for the mass combination characteristic of this reaction. The effect of changing the mass combination fromHplus;LH(heavyplus;lighthyphen;heavy; massesmClplus;mHI) toLplus;HH(lightplus;heavyhyphen;heavy; massesmHplus;mCl2) on the Clplus;HI surface has been explored using a full 3D set of trajectories at 300deg;K. The effect is to markedly reduce the ``mixed energy release'' responsible for the efficient vibrational excitation on the repulsive surface. Vibrational and rotational excitation in the reaction products is correspondingly diminished, and translational excitation is enhanced. The efficient vibrational and rotational excitation forHplus;LH(Clplus;HI), and contrasting behavior forLplus;HH(Hplus;Cl2) have been observed in infrared chemiluminescence experiments. The present findings are therefore in accord with earlier proposals that both these reactions involve predominantly ``repulsive'' energy release. The computed product angular distribution for the Clplus;HI reaction at 300deg;K was almost isotropic, in contrast to the exclusively backwardhyphen;hemisphere scattering for theLplus;HHmass combination on the same energy surface. At 6 kcal moleminus;1collision energy the computed angular distribution of HCl from the Clplus;HI reaction showed exclusively sharplyhyphen;forward scattering, in accord with the results of recent molecular beam experiments J. D. MacDonald and D. R. Herschbach (unpublished). Enhanced collision energy gave rise to a small decrease in the computed mean product vibrational excitation, a small increase in mean product rotational excitation and a large increase in product translational excitation. These changes in product energy distribution are in qualitative accord with the findings from infrared chemiluminescence and molecular beam studies at enhanced collision energy. The overall conclusion is that the repulsive LEPS (London, Eyring, Polanyi, Sato) potentialhyphen;energy hypersurface used here and in our earlier work, provides an acceptable (though not unique) first approximation to the actual interaction potential.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号