...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters
【24h】

FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters

机译:FDTD simulation of LEMP propagation over lossy ground: Influence of distance, ground conductivity, and source parameters

获取原文
获取原文并翻译 | 示例
           

摘要

We have computed lightning electromagnetic pulses (LEMPs), including the azimuthal magnetic field Hφ, vertical electric field Ez, and horizontal (radial) electric field Eh that propagated over 5 to 200 km of flat lossy ground, using the finite difference time domain (FDTD) method in the 2-D cylindrical coordinate system. This is the first systematic full-wave study of LEMP propagation effects based on a realistic return-stroke model and including the complete return-stroke frequency range. Influences of the return-stroke wavefront speed (ranging from c/2 to c, where c is the speed of light), current risetime (ranging from 0.5 to 5 μs), and ground conductivity (ranging from 0.1mS/m to ∞) on Hφ, Ez, and Eh have been investigated. Also, the FDTD-computed waveforms of Eh have been compared with the corresponding ones computed using the Cooray-Rubinstein formula. Peaks of Hφ, Ez, and Eh are nearly proportional to the return-stroke wavefront speed. The peak of Eh decreaseswith increasing current risetime,while those of Hφ and Ez are only slightly influenced by it. The peaks of Hφ and Ez are essentially independent of the ground conductivity at a distance of 5 km. Beyond this distance, they appreciably decrease relative to the perfectly conducting ground case, and the decrease is stronger for lower ground conductivity values. The peak of Eh increases with decreasing ground conductivity. The computed Eh/Ez is consistent with measurements of Thomson et al. (1988). The observed decrease of Ez peak and increase of Ez risetime due to propagation over 200 km of Florida soil are reasonably well reproduced by the FDTD simulation with ground conductivity of 1mS/m.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号