首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Hard sphere-like glass transition in eye lens alpha-crystallin solutions
【24h】

Hard sphere-like glass transition in eye lens alpha-crystallin solutions

机译:Hard sphere-like glass transition in eye lens alpha-crystallin solutions

获取原文
获取原文并翻译 | 示例
       

摘要

We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens alpha-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus-Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from alpha-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49 vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at alpha-crystallin volume fractions near 58. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens alpha-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The alpha-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号