首页> 外文期刊>journal of chemical physics >Radiationless singlet deactivation in isolated large molecules. I Naphthalene, naphthol, and naphthylamine
【24h】

Radiationless singlet deactivation in isolated large molecules. I Naphthalene, naphthol, and naphthylamine

机译:Radiationless singlet deactivation in isolated large molecules. I Naphthalene, naphthol, and naphthylamine

获取原文
           

摘要

Fluorescence lifetimes of naphthalene, bgr;hyphen;naphthol, and bgr;hyphen;naphthylamine have been measured under collisionhyphen;free conditions in the vapor. The lifetimes were then combined with the measured quantum yield (for naphthalene), or with the estimated radiative decay rate (for bgr;hyphen;naphthylamine), to deduce the nonradiative decay rate of the molecule as a function of excitation energy. The results indicate that (1) the nonradiative decay probability increases, first slowly then very rapidly, as the excess vibrational energy in the lowest excited singlet state (S1) is varied over a range of nearly 20 000 cmminus;1, and (2) a plot of nonradiative decay rate versus excitation energy exhibits a break at photon energy corresponding to the second excited singlet state of a molecule. Observation (1) is interpreted in terms of two different pathways of radiationless transition that compete in the singlet deactivation of the molecules. It is argued that, in the region of low excess energies, the intersystem crossing to the triplet manifold dominates over the internal conversion to the ground state owing to a more favorable Frankhyphen;Condon factor. As the excess vibrational energy is increased the internal conversion, which is expected to display greater energy dependence than the intersystem crossing, becomes increasingly more important and it finally becomes the dominant pathway of nonradiative decay at high excess energies. This model of competing radiationless transitions is shown to be consistent with the observed deuterium isotope effect on the nonradiative decay rate of naphthalene vapor. Observation (2), which confirms our earlier results J. Chem. Phys.58,1247 (1973), suggests thatS2rarr;S1internal conversion leads to changes in vibrational distribution, which is substantially maintained during the time scale of radiationless decay ofS1. Thus, the intramolecular vibrational energy redistribution, leading to the randomization of vibrational levels, does not appear to be a fast process even for large molecules with high density of states.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号